Idiopathic Bronchiectasis and Connective Tissue Fibrillinopathies: Dural Ectasia as a Marker of a Distinct Bronchiectasis Subgroup

M. Leigh Anne Daniels, MD, MPH University of North Carolina October 2, 2012

Background

- Bronchiectasis: airway dilation, increased infections
 - Occurs in cystic fibrosis (CF) & primary ciliary dyskinesia (PCD)
- Idiopathic bronchiectasis (IB): unknown cause
 - Prevalence up to 271.8/100,000 in US
 - Seen in RML, lingula, lower lobes
- Dural ectasia: dural sac dilation → large spinal canal.
 - Detected in lower thoracic & lumbar spine with CT or MRI
- Present in "fibrillinopathies", eg Marfan, Ehlers-Danlos, Loeys-Dietz
 - Not seen in absence of NF1, ankylosing spondylitis, scoliosis, tumor
 - No gender difference in prevalence, severity.
- Spinal canal dimensions published but not validated.

Phenotypic Connection

Bronchiectasis & NTM

- "Lady Windermere":
 - tall, slender; predominantly female
 - often with scoliosis, pectus, & mitral valve prolapse
- Anatomy and impaired structural integrity -> distorted tissue organization, impaired mucociliary clearance
- Mutations unknown

Marfan Syndrome (Fibrillinopathies)

- Manifestations in heart, skeleton, eyes, lung
- Lung disease due to weak supporting tissue framework
 - Spontaneous pneumothorax, emphysema, occasional bronchiectasis
- Autosomal dominant with mutations in fibrillin-1, TGFBR1, TGFBR2
 - Fibrillin polymers form organ specific structural matrix, interact with elastin protein

Hypothesis

- Aha moment: Our stellar chest radiologist notices enlarged dural sac at L1 on chest CTs from IB patients
- IB patients have similar body structure phenotypes (pectus, scoliosis) to Marfan.
- Lung disease in fibrillinopathy patients raises question of shared variation in structural tissue genes.
- Hypothesis: IB patients have an increased prevalence of dural ectasia compared to patients with bronchiectasis with known cause (CF, PCD) & non-bronchiectasis control subjects

Study Design

- Standard non-contrast MR of thoraco-lumbar spine on 1.5T MR scanner.
- Three reviewers blinded to diagnosis
 - DSD measured at L1 to S1 midcorpus level in AP plane
- Other variables collected:
 - Height, weight, arm span
 - Presence & degree of scoliosis, pectus abnormalities, other skeletal abnormalities, mitral valve prolapse

Development of Methods in Control (Non-Bronchiectasis) Subjects

- Undergoing abdominal or lumbar MRI for medical reason (N=45)
- Measure AP dural sac diameter (DSD) perpendicular to long axis of dural sac at midcorpus level from L1 to S1
- Not influenced by age, gender, height
- Reproducible by 3 reviewers

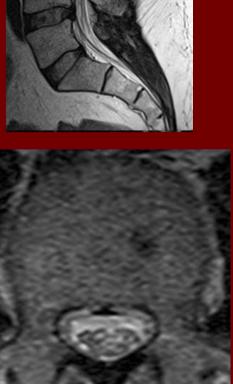
	Males	Females
Number	19	26
Average Age (range)	45 (19-83)	43.7 (18-81)
Average Height [cm] (range)	178.1 (162.6 – 188.0)	161.3 (147.3 – 172.7)

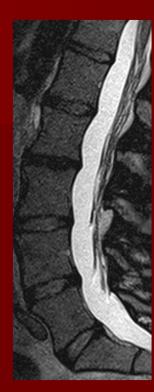
Bronchiectasis Study Subjects

- IB and disease controls (PCD, CF) identified from our GDMCC participants, UNC CF & Pulmonary Center, & Bronchiectasis Research Registry.
- Exclusion: < age 18, severe scoliosis, spine surgery, vertebral body injury, contraindication to MRI.

	Non- bronchiectasis Control	Idiopathic Bronchiectais	Primary Ciliary Dyskinesia	Cystic Fibrosis
Number	45	28	28	13
Gender	F=26, M=19	F=24, M=4	F=23, M=5	F=8, M=5
Age (range)	44 (18 – 83)	54.6 (21 – 82)	34.7 (18 – 53)	31.8 (19 – 48)
Height [cm] (range)	164.5 (147.3 – 188)	163.7 (149.5 – 187.6)	167.6 (150 – 183.4)	162.9 (149 – 180)

Dural Sac Diameter Measurements


N = 45 N = 41 N = 28


Non-bronchiectasis

Idiopathic bronchiectasis

Marfan

IB Subjects Phenotypes Ranked by DSD

 Compared prevalence of pectus abnormality or scoliosis in patients with DSD above the non-bronchiectasis mean to those below the mean (p=0.05)

Non-Bronchiectasis
Mean 1.335

Age at Time				Average	Pectus	
of Scan	Gender	Race	Ethnicity	DSD	Abnormality	Scoliosis
72	F	С	Non-H	2.01667	No	Yes
63	F	С	Non-H	2	Yes	No
68	F	С	Non-H	1.91667	Yes	Yes
58	F	С	Non-H	1.88333	Yes	No
41	F	С	Non-H	1.85	No	Yes
82	F	С	Non-H	1.8	No	No
81	М	С	Non-H	1.71667	No	No
56	F	С	Non-H	1.71667	No	No
29	М	С	Non-H	1.66667	No	No
72	F	С	Non-H	1.58333	Yes	No
69	М	AA	Non-H	1.56667	No	Yes
58	F	С	Non-H	1.55	Yes	No
43	F	С	Non-H	1.51667	Yes	No
62	F	С	Non-H	1.5	No	Yes
55	F	С	UNK	1.5	No	No
64	F	C	Non-H	1.48333	No	No
68	F	C	Non-H	1.46667	No	Yes
59	F	C	Non-H	1.41667	No	No
46	F	C	Non-H	1.4	No	No
63	М	C	Non-H	1.38333	No	No
41	F	С	Non-H	1.38333	No	No
23	F	NA	Non-H	1.36667	No	Yes
21	F	NA	Non-H	1.35	No	No
64	F	С	Non-H	1.31667	No	No
31	F	С	Non-H	1.31667	No	No
59	F	С	Non-H	1.31667	No	No
18	F	NA	Non-H	1.23333	No	No
63	F	С	Non-H	1.18333	No	No

Further Analysis and Direction

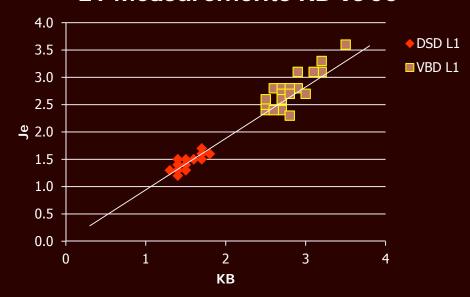
- Test for associations between dural ectasia & other pertinent clinical phenotypes
- Extend principle to see if differences in dural ectasia in IB can be detected in lower thoracic spine on chest CTs.
- Pilot study of genetic variation: 30 candidate genes (exome sequence data) in 24 IB & 24 PCD patients
- Link genetic variation in patients with IB & dural ectasia, as well as other clinical phenotypes such as scoliosis, pectus, mitral valve prolapse, joint hypermobility

Thanks to . . .

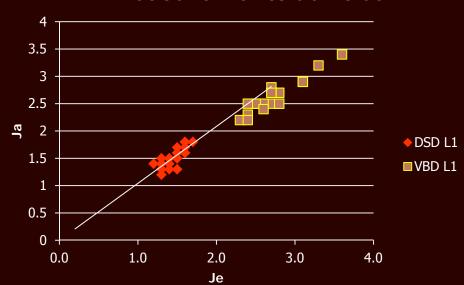
- Dr. Michael Knowles
- Dr. Katherine Birchard
- Jesse Conyers
- Jared Lowe
- Michael Patrone
- Dr. Deepika Polineni
- Investigators and Coordinators from the GDMCC

- Niel Andrews
- Katie Paul
- Katie Saba
- Beth Godwin
- BRIC Staff
- NCATS/NC TRACS Institute

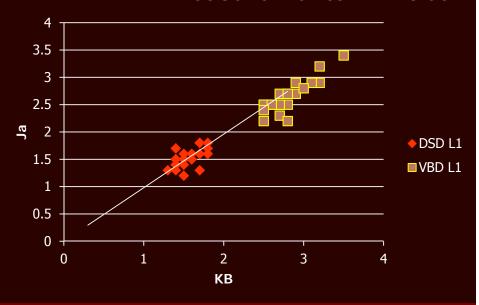
Supported by the National Center for Advancing Translational Sciences and National Institutes of Health, through CTSA UL1TR000083 and U54 HL096458-06, funded by the Office of the Director, and supported by ORDR and NHLBI, NIH.

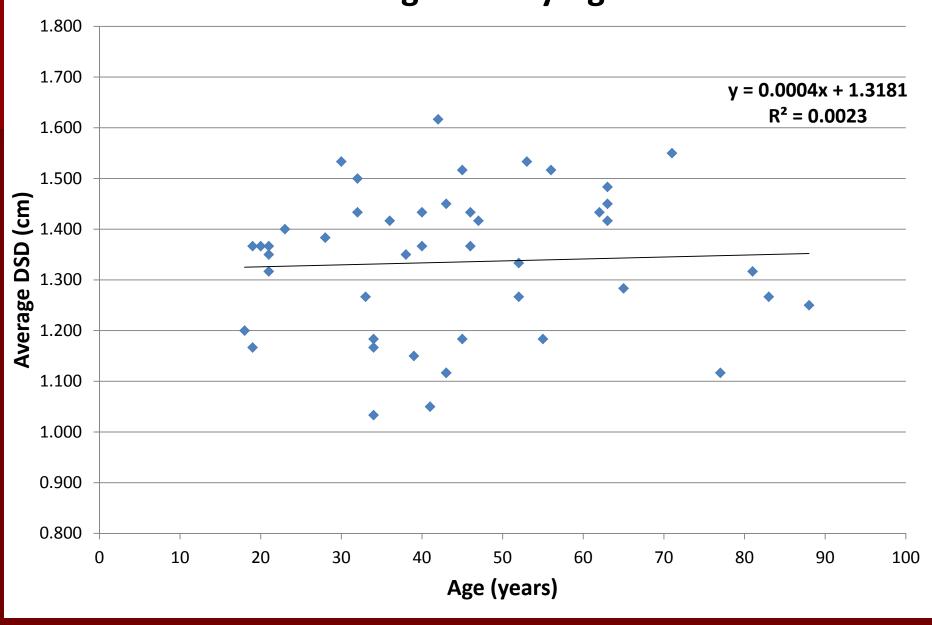

Dural Sac Ratio

	Male	Female	P-value
L1	0.52 (0.09)	0.59 (0.08)	0.012
L2	0.47 (0.09)	0.54 (0.07)	0.005
L3	0.41 (0.06)	0.51 (0.07)	4.5 x10 ⁻⁵
L4	0.42 (0.07)	0.49 (0.07)	0.002
L5	0.42 (0.07)	0.48 (0.08)	0.02
S1	0.44 (0.09)	0.49 (0.1)	0.12
Ave	0.45 (0.06)	0.52 (0.06)	0.0004

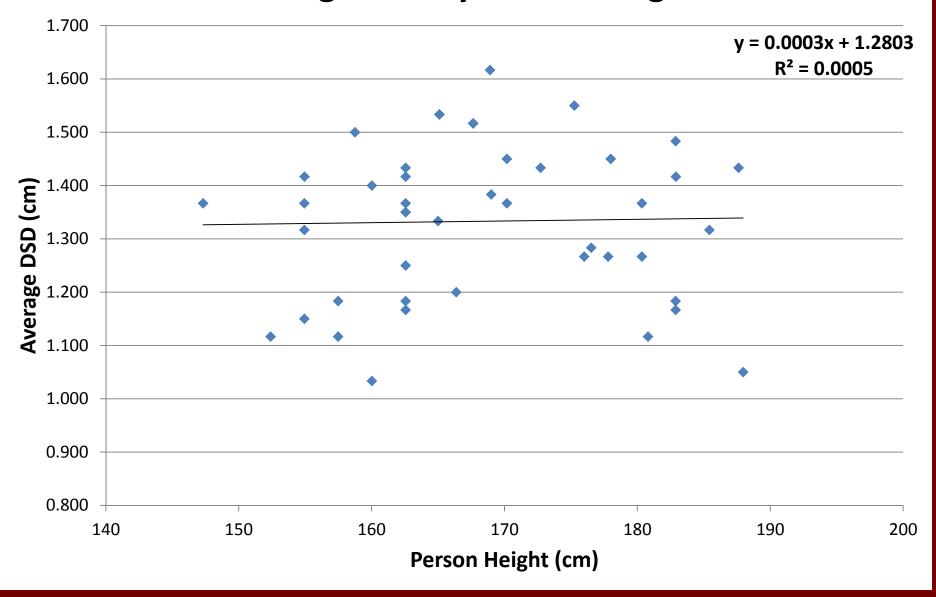

Average DSD by Gender

	Male	Female	P-value
L1	1.5 (0.12)	1.5 (0.16)	0.8
L2	1.4 (0.16)	1.4 (0.16)	0.5
L3	1.3 (0.15)	1.4 (0.17)	0.2
L4	1.4 (0.16)	1.4 (0.19)	0.5
L5	1.3 (0.15)	1.3 (0.22)	1
S1	1.1 (0.21)	1.0 (0.20)	0.3
Ave	1.33 (0.13)	1.34 (0.15)	0.782


L1 Measurements KB vs Je

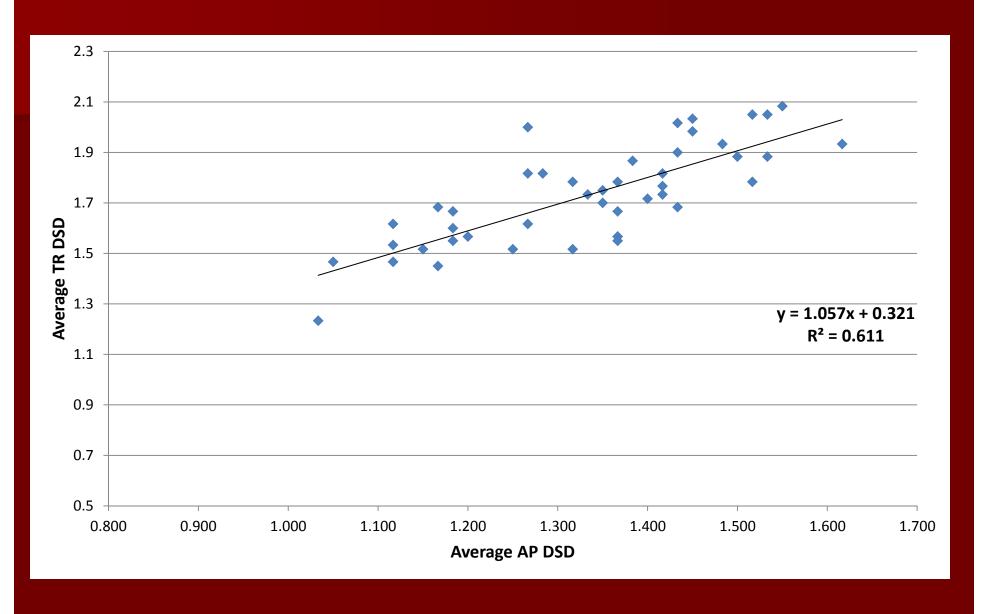


L1 Measurements KB vs Ja



Reproducible measurements by three independent reviewers

Average DSD by Person Height


Lung Disease and Marfan's Syndrome

- Manifestations:
 - Spontaneous pneumothorax, generalized emphysema.
 - Cystic lung dz, malformations, incr risk of PNA
 - Bronchiectasis reported
- Due to weakness in pulmonary framework
 - CF, asthma degraded elastin and collagen
 - Mouse model of COPD and mitral valve disease with elevated TGF-β
 - TGF-β plays role in extracellular matrix formation/homeostasis.

Further Direction for Assessing Dural Ectasia Using Chest CT

- Pilot study comparing MRI quantitation of dural ectasia with estimates of dural ectasia from lower thoracic vertebral levels as seen on routine chest CT
- If successful, could extend quantitation of dural ectasia to 300 IB patients enrolling in our multi-center consortium study.

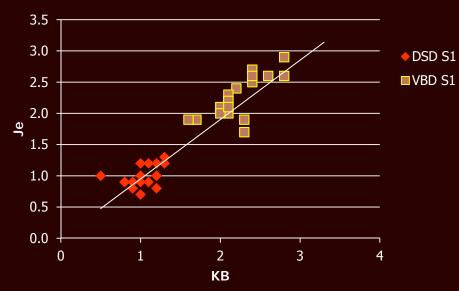
DSD: AP vs TR

Dural Sac Diameter

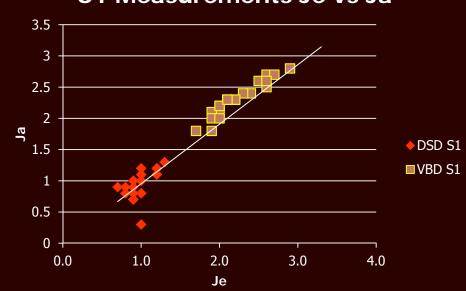
	Male	Female	P-value
L1	1.5 (0.12)	1.5 (0.16)	0.8
L2	1.4 (0.16)	1.4 (0.16)	0.5
L3	1.3 (0.15)	1.4 (0.17)	0.2
L4	1.4 (0.16)	1.4 (0.19)	0.5
L5	1.3 (0.15)	1.3 (0.22)	1
S1	1.1 (0.21)	1.0 (0.20)	0.3
Ave	1.33 (0.13)	1.34 (0.15)	0.782

Vertebral Body Diameter

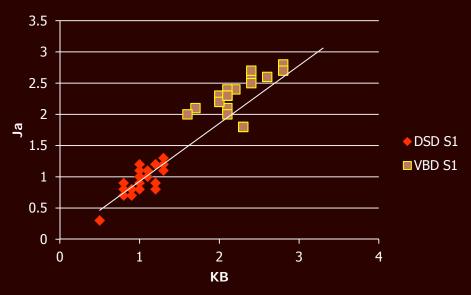
	Male	Female	P-value
L1	3.0 (0.35)	2.6 (0.18)	8.4 x10 ⁻⁵
L2	3.1 (0.40)	2.7 (0.19)	1.3 x10 ⁻⁴
L3	3.3 (0.28)	2.8 (0.23)	5.4 x10 ⁻⁸
L4	3.2 (0.27)	2.8 (0.21)	4.8 x10 ⁻⁶
L5	3.1 (0.30)	2.7 (0.20)	1.2 x10 ⁻⁵
S1	2.4 (0.24)	2.0 (0.21)	2.8 x10 ⁻⁶
Ave	3.0 (0.25)	2.61 (0.16)	1.3 x10 ⁻⁷


Dural Sac Ratio

	Male	Female	P-value
L1	0.52 (0.09)	0.59 (0.08)	0.012
L2	0.47 (0.09)	0.54 (0.07)	0.005
L3	0.41 (0.06)	0.51 (0.07)	4.5 x10 ⁻⁵
L4	0.42 (0.07)	0.49 (0.07)	0.002
L5	0.42 (0.07)	0.48 (0.08)	0.02
S1	0.44 (0.09)	0.49 (0.1)	0.12
Ave	0.45 (0.06)	0.52 (0.06)	0.0004

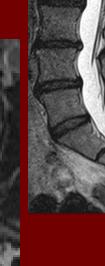

Dural Sac Volume Calculations

- Assuming an elliptical cylinder as the basic shape of the dural sac, dural sac volumes were calculated using the formula:
 - V= Short Radius * Long Radius * Π * Height
- Intervertebral discs were excluded given variability within same individual and between individuals



S1 Measurements Je vs Ja

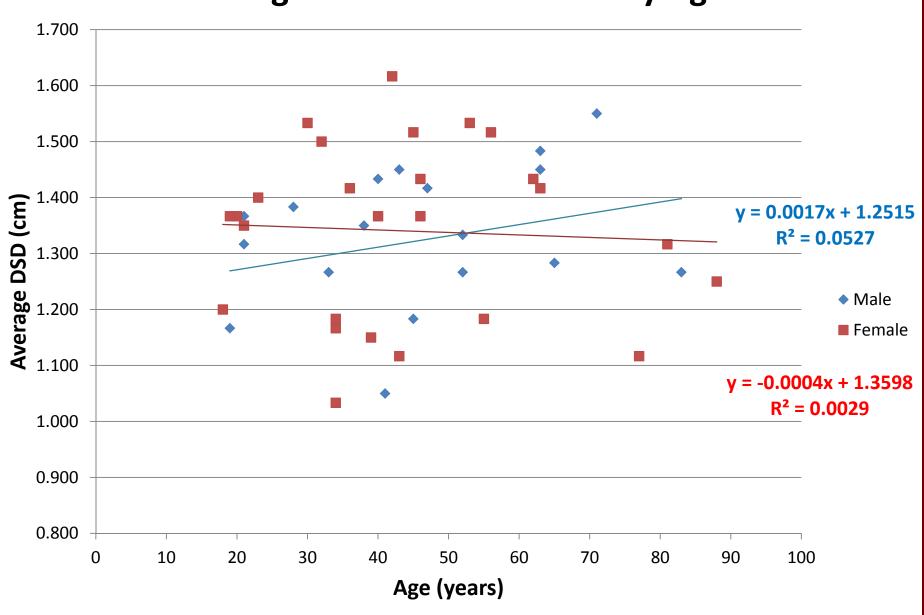
S1 Measurements KB vs Ja

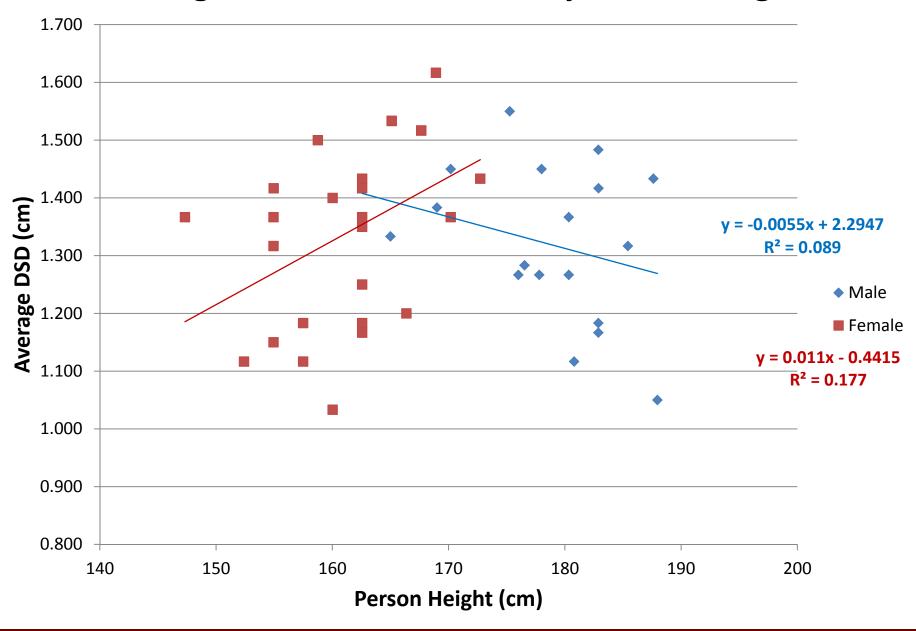


Reproducible measurements by three independent reviewers

Significance

- Investigation of relationship between idiopathic bronchiectasis and dural ectasia has never been performed.
- A positive correlation between idiopathic bronchiectasis and dural ectasia would help explain the etiology of "idiopathic" bronchiectasis
 - Some of these patients may actually have an underlying connective tissue disorder, which may be amenable to genetic studies
 - It could allow for identification of patients at risk of developing bronchiectasis and allow for closer monitoring.




Demographics of Study Groups

	Non- bronchiectasis Control	Idiopathic bronchiectasis	Primary Ciliary Dyskinesia	Cystic Fibrosis
Number	45	28	28	13
Gender	F=26, M=19	F=24, M=4	F=23, M=5	F=8, M=5
Age	44 (18 – 83)	54.6 (21 – 82)	34.7 (18 – 53)	31.8 (19 – 48)
Height (cm)	164.47 (147.32 - 187.96)	163.7 (149.5 – 187.6)	167.6 (150 – 183.4)	162.9 (149 – 180)

Average Dural Sac Diameter by Person Height

