

Cholesterol pool size in Smith-Lemli-Opitz syndrome children receiving cholesterol supplementation alone or combined with simvastatin

<u>Semone B. Myrie^{1,2}</u>, Samar Ahmad¹, Louise Merkens³, Jean-Baptiste Roullet³, Robert D. Steiner^{3,4} and Peter J.H. Jones^{1,2}

¹Human Nutritional Sciences, ²The Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba

³Pediatrics, ⁴Molecular and Medical Genetics, Oregon Health & Science University, 3181 SW Jackson Park Road, Portland

Smith-Lemli-Opitz Syndrome (SLOS)

- Syndrome of multiple congenital anomalies including intellectual disability and behavioral problems –first described by Smith et al., 1964 (J Pediatr 64:210-217)
- Autosomal recessive genetic disorder
- Third most common inborn error of metabolism in the US
 - Observed incidence: 1/20,000-1/40,000
 - Carrier frequency: ~1-2% for Caucasians

Clinical Features

- SLOS phenotypic spectrum is very broad, ranging from mild disorder to lethal malformation syndrome
- Characteristic craniofacial features (eg., microphalyl)
- Cleft palate
- Brain malformations
- Growth & developmental retardation
- Limb anomalies (syndactyly)
- Genital anomalies
- Congenital heart defects
- Feeding difficulties
- Behavioral difficulties

Porter, 2008 Eur J Hum Genetics ,16: 535-541

Biochemical Basis of SLOS

- Defect in cholesterol synthesis (Iron et al. 1993, Lancet 341: 1414; Tint et al. 1994, NEJM 330: 107-113)
 - Abnormal sterol profile:
 - Elevated 7-dehydrocholesterol (7-DHC): 1000-fold
 - Low plasma cholesterol levels
- Enzyme studies (Shefer et al. 1993, JLR 32: 1441-1448)
 - Deficient 7-dehydrocholesterol- Δ^7 reductase (DHCR7) activity
 - DHCR7 catalyzes the **final** step in cholesterol biosynthetic pathway

Therapeutic Management of SLOS

- Diet: Cholesterol supplementation has become a standard therapy
 - Hypothesis: Improved developmental progress in SLOS children
 - Ameliorate cholesterol deficiency, thus increase plasma and tissue cholesterol levels
 - Lower 7-DHC synthesis by feedback inhibition

Medication

- HMG-CoA reductase inhibitors (Statins)
- Therapeutic intervention for SLOS is aimed at maximizing whole body cholesterol pool size while down-regulating biosynthesis to decrease the buildup of potentially toxic precursors

Cholesterol Miscible Pool and Turnover of Plasma Cholesterol in Man

- 196o's measurement of body miscible pool of cholesterol by radio-isotope dilution principles
- Goodman et al: Curve for disappearance of ¹⁴C-cholesterol from plasma over 10 wks
- Studies show that the turnover of plasma cholesterol in humans can be described by a two-pool-model

M1
Rapid equilibrium
(hrs-days) with
plasma cholesterol

M2
Slow equilibrium
(days-wks) with
plasma cholesterol

- M1: includes cholesterol in liver, plasma, erythrocyte and some in viscera
- M2: represents cholesterol in all other tissues

Goodman and Noble 1968, J Clin Invest 47: 231-241

Study Objective

 Assessment of whole body cholesterol pool size in SLOS patient receiving supplemental dietary cholesterol alone or combined with simvastatin

Study Design and Method Subjects and Testing

- SLOS subjects receiving a high cholesterol diet alone (HI; n=11; age: 7±2 yr) or combined with simvastatin (HI+ST; n=4; age: 9±2 yr)
- Admit to hospital inpatient Metabolic unit for 1 week (OHSU)
- Treatments:
 - High cholesterol: Supplemented with egg yolks (35 mg/kg/d) or crystalline cholesterol (47 mg/kg/d)
 - Simvastin: Gradually increased from 0.2 mg/kg to 0.4 mg/kg
- Stable Isotope cholesterol test

Baseline blood collection

(t=0 h)

I.V injection of 18O-cholesterol (1.0-1.4 mg/kg BW) or D7- cholesterol (0.9-1.4 mg/kg BW)

Blood sample collection at: 12, 24, 48, 72 h and 1, 3, 5, 8, 10 wk

Study Design and Method Analytical Procedures

- Cholesterol extracted from RBC, derivatized with piconyl ester and analyzed with liquid chromatography tandem mass spectrometry (LC/MS/MS)
- Sterols (cholesterol, 7-DHC, 8-DHC) were analyzed by gas chromatography
- Statistical analysis: Unpaired t-test, Mean +/- SEM

Cholesterol enrichment curve in SLOS subject following IV [18 O]-Cholesterol

Cholesterol Pool Size

- M1 pool (rapidly exchanging pool) blood, visceral organs (liver, intestines, pancreas, spleen, kidneys, lung):
- SLOS children M1 pool:
 - Supplemented with chol: 0.33±0.03 g/kg, n=11
 - Cholesterol and statin: 0.52±0.11 g/kg, n=4
- Normal children: None reported to date
- Normal adult M1 pool:0.35±0.08 g/kg, n=30
 (Samuel et al, 1978 J Lipid Res 19: 94-1020)

Effects of Cholesterol Supplementation in SLOS Children

PLASMA CHOLESTEROL

M1 CHOLESTEROL POOL

Independent	Pearson r	P-value	Independent	Pearson r	P-value
variables			variables		
Weight (kg)	0.277	0.359	Weight (kg)	0.514	0.072
Age (yr)	0.127	0.665	Age (yr)	0.563	0.045
Chol intake	0.892	<0.0001	Chol intake	0.051	0.868
(mg/kg)			(mg/kg)		
Chol (mg/dl)	n/a	n/a	Chol (mg/dl)	0.128	0.676
7DHC (mg/dl)	-0.652	0.016	7DHC (mg/dl)	-0.179	0.541
8DHC (mg/dl)	-0.692	0.009	8DHC (mg/dl)	-0.107	0.715

Discussion

- Rationale for considering high cholesterol diet with statin as potential therapy
 - Whole body cholesterol pool size enhanced by high cholesterol diet combined with simvastatin
- Simvastatin
 - Inhibits HMGCo-A reductase, blocking cholesterol synthesis as a way to avoid the formation of large amounts of 7-DHC and 8-DHC
 - Animal studies suggests that simvastatin up-regulates residual DHCR7 activity (Wassif et al. 2005, Mol Genet Metab 85:96-107; Correa-Cerro et al 2006, Hum Mol Genet 15:839-851)
- First reported study utilize stable isotope technique to to assess cholesterol pool size in children

Acknowledgments

- Patients and families
- Sterol & Isoprenoid research consortium
- Rare Diseases Clinical Research network
 - RDCRN Travel award

- Funding:
 - NIH Ro1 HLo73980,
 - NIH U54 HD061939

