Next-Generation Sequencing for Craniofacial Gene Discovery

Elizabeth Bhoj, MD PhD
Hakon Hakonarson, MD PhD
Elaine Zackai, MD
November 3rd, 2016
Study Design

• Study a group of patients with syndromic forms of craniofacial anomalies who have eluded a specific diagnosis through traditional expert genetic evaluation

• Perform exome or genome sequencing on about 150 unrelated families with undiagnosed syndromic craniofacial anomalies
 – Sample collect so successful increased to 500 families
Clinical Whole Exome Sequencing Reanalysis

• 50 families “negative” from reference labs
• Referred by Samatha Vergano
• At four years presented with hypotonia, developmental delay, and macrocephaly
• Sister also demonstrated hypotonia and delay without macrocephaly
TBCK discovery

• CAG by Dong Li, PhD finds both sisters to be compound heterozygote for the TBCK (TBC1 domain containing kinase) variants:
 • c.2060-2A>G (splice site variant)
 • c.803_806delTGAA:p.M268fsX26 (frameshift variant)
Cohort of 13 similar patients

- Hypotonia
- Variable Developmental Delay
- May present like a leukodystrophy or storage disorder
- May include seizures
- No common facial gestalt
Just how common is it?

• We’re now aware of at least 25 affected families worldwide.
Decreased TBCK and mTOR signalling

- Western blot for specific protein levels in patient lymphoblastic cell lines:
 - Absent TBCK protein
 - Equal total mTOR and S6
 - Decreased phosphorylated S6

In collaboration with Peter Crino, Temple University
Quantifiable defect in mTOR

• >70% decrease in mTOR activation in two different patient fibroblast cells lines
Towards targeted therapy

• One of the many activators of the mTOR pathway has been shown to be leucine, one of the essential amino acids, through mTORC1.

• Leucine supplementation via mTOR activation has been studied in the role of adipogenesis, increased muscle mass, and diabetes control.

• Current pediatric trials using leucine as treatment for Diamond-Blackfan anemia
Leucine activates mTOR in TBCK-/- cells

- Leucine (600µg/ml) added to patient TBCK-/- fibroblasts recovers PS6 phosphorylation
- This suggests a potential therapeutic target for these patients

In collaboration with Peter Crino, Temple University
Mutations in *TBCK*, Encoding TBC1-Domain-Containing Kinase, Lead to a Recognizable Syndrome of Intellectual Disability and Hypotonia

Elizabeth J. Bhoj,1,2,16,* Dong Li,1,16 Margaret Harr,2 Shimon Edvardson,3,4 Orly Elpeleg,4 Elizabeth Chisholm,5 Jane Juusola,6 Ganka Douglas,6 Maria J. Guillem Sacoto,6 Karine Siquier-Pernet,7 Abdelkrim Saadi,8 Christine Bole-Feysot,9 Patrick Nitschke,10 Alekhya Narravula,11 Maria Walke,12 Michele B. Horner,13 Debra-Lynn Day-Salvatore,13 Parul Jayakar,12 Samantha A. Schrier Vergano,5 Mark A. Tarnopolsky,14 Madhuri Hegde,11 Laurence Colleaux,7 Peter Crino,15 and Hakon Hakonarson1
TBCK Future Directions

• Currently awaiting IRB approval for a TBCK-patient registry, designing leucine trial
• RNAseq in progress on patient cells
• Breeding *tbck*-/- mice and plan to perform neurobehavioral testing
 – Autopsies (including careful brain examination)
 – Leucine to pregnant mothers and pups
• Autophagy and proteosomal degradation studies on patient cell lines
Additional Findings

• Currently 24 novel genes from this cohort undergoing additional study

• Focusing on treatable conditions
 – New projects on novel genes working through epigenetic mechanisms that may be new targets for precision therapies
Acknowledgements

• **Dong Li**, PhD and Hakon Hakonarson and the Center for Applied Genomics
• Dr. Zackai, Margaret Harr, Beth Keena, Carey McDougal and Clinical Genetics
• All our clinical collaborators, especially Sammy Vergano for sending the original TBCK family
• Peter Crino for helping with the functional work, and Laurence Colleux for sharing his TBCK antibody
• All our participating families
Questions?