Cholesterol pool size in Smith-Lemli-Opitz syndrome children receiving cholesterol supplementation alone or combined with simvastatin

Semone B. Myrie1,2, Samar Ahmad1, Louise Merkens3, Jean-Baptiste Roullet3, Robert D. Steiner3,4 and Peter J.H. Jones1,2

1Human Nutritional Sciences, 2The Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba

3Pediatrics, 4Molecular and Medical Genetics, Oregon Health & Science University, 3181 SW Jackson Park Road, Portland
Smith-Lemli-Opitz Syndrome (SLOS)

- Syndrome of multiple congenital anomalies including intellectual disability and behavioral problems – first described by *Smith et al., 1964 (J Pediatr 64:210-217)*

- Autosomal recessive genetic disorder

- Third most common inborn error of metabolism in the US
 - Observed incidence: 1/20,000-1/40,000
 - Carrier frequency: ~1-2% for Caucasians
Clinical Features

- SLOS phenotypic spectrum is very broad, ranging from mild disorder to lethal malformation syndrome
- Characteristic craniofacial features (e.g., microphaly)
- Cleft palate
- Brain malformations
- Growth & developmental retardation
- Limb anomalies (syndactyly)
- Genital anomalies
- Congenital heart defects
- Feeding difficulties
- Behavioral difficulties

Porter, 2008 Eur J Hum Genetics, 16: 535-541
Biochemical Basis of SLOS

 - Abnormal sterol profile:
 - Elevated 7-dehydrocholesterol (7-DHC): 1000-fold
 - Low plasma cholesterol levels

- Enzyme studies (Shefer et al. 1993, JLR 32: 1441-1448)
 - Deficient 7-dehydrocholesterol-Δ7- reductase (DHCR7) activity
 - DHCR7 catalyzes the final step in cholesterol biosynthetic pathway
Figure 1: Cholesterol Biosynthesis

Statins

SLOS

Bile Acids

Membrane Biogenesis

Steroid Hormones
Therapeutic Management of SLOS

- **Diet**: Cholesterol supplementation has become a standard therapy
 - Hypothesis: Improved developmental progress in SLOS children
 - Ameliorate cholesterol deficiency, thus increase plasma and tissue cholesterol levels
 - Lower 7-DHC synthesis by feedback inhibition

- **Medication**
 - HMG-CoA reductase inhibitors (Statins)

- Therapeutic intervention for SLOS is aimed at maximizing *whole body cholesterol pool size* while down-regulating biosynthesis to decrease the buildup of potentially toxic precursors
Cholesterol Miscible Pool and Turnover of Plasma Cholesterol in Man

- 1960’s - measurement of body miscible pool of cholesterol by radio-isotope dilution principles
- Goodman et al: Curve for disappearance of 14C-cholesterol from plasma over 10 wks
- Studies show that the turnover of plasma cholesterol in humans can be described by a two-pool-model
 - M1: includes cholesterol in liver, plasma, erythrocyte and some in viscera
 - M2: represents cholesterol in all other tissues

Goodman and Noble 1968, J Clin Invest 47: 231-241
Study Objective

- Assessment of whole body cholesterol pool size in SLOS patient receiving supplemental dietary cholesterol alone or combined with simvastatin
SLOS subjects receiving a high cholesterol diet alone (HI; n=11; age: 7±2 yr) or combined with simvastatin (HI+ST; n=4; age: 9±2 yr)

- Admit to hospital inpatient Metabolic unit for 1 week (OHSU)

- **Treatments:**
 - **High cholesterol:** Supplemented with egg yolks (35 mg/kg/d) or crystalline cholesterol (47 mg/kg/d)
 - **Simvastin:** Gradually increased from 0.2 mg/kg to 0.4 mg/kg

- **Stable Isotope cholesterol test**

 - **Baseline blood collection** (t=0 h)
 - **I.V injection of 18O-cholesterol (1.0-1.4 mg/kg BW) or D7- cholesterol (0.9-1.4 mg/kg BW)**
 - **Blood sample collection at:** 12, 24, 48, 72 h and 1, 3, 5, 8, 10 wk
Study Design and Method Analytical Procedures

- Cholesterol extracted from RBC, derivatized with piconyl ester and analyzed with liquid chromatography tandem mass spectrometry (LC/MS/MS)

- Sterols (cholesterol, 7-DHC, 8-DHC) were analyzed by gas chromatography

- Statistical analysis: Unpaired t-test, Mean +/- SEM
Cholesterol enrichment curve in SLOS subject following IV 18O-Cholesterol.
M1 pool (rapidly exchanging pool) – blood, visceral organs (liver, intestines, pancreas, spleen, kidneys, lung):

- SLOS children M1 pool:
 - Supplemented with chol: 0.33±0.03 g/kg, n=11
 - Cholesterol and statin: 0.52±0.11 g/kg, n=4

- Normal children: None reported to date

- Normal adult M1 pool: 0.35±0.08 g/kg, n=30
The images depict bar charts comparing different parameters between two groups: HI and HI+ST.

1. **Whole body cholesterol pool size (mg/kg body wt)**
 - HI: ~300 mg/kg
 - HI+ST: ~600 mg/kg
 - p-value: 0.04

2. **Plasma cholesterol (mg/dL)**
 - HI: ~80 mg/dL
 - HI+ST: ~100 mg/dL
 - p-value: 0.18

3. **Plasma 7DHC (mg/dL)**
 - HI: ~10 mg/dL
 - HI+ST: ~14 mg/dL
 - p-value: 0.03

4. **Plasma 8DHC (mg/dL)**
 - HI: ~8 mg/dL
 - HI+ST: ~10 mg/dL
 - p-value: 0.02
PLASMA CHOLESTEROL

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Pearson r</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg)</td>
<td>0.277</td>
<td>0.359</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>0.127</td>
<td>0.665</td>
</tr>
<tr>
<td>Chol intake (mg/kg)</td>
<td>0.892</td>
<td><0.0001</td>
</tr>
<tr>
<td>Chol (mg/dl)</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>7DHC (mg/dl)</td>
<td>-0.652</td>
<td>0.016</td>
</tr>
<tr>
<td>8DHC (mg/dl)</td>
<td>-0.692</td>
<td>0.009</td>
</tr>
</tbody>
</table>

M₁ CHOLESTEROL POOL

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Pearson r</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg)</td>
<td>0.514</td>
<td>0.072</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>0.563</td>
<td>0.045</td>
</tr>
<tr>
<td>Chol intake (mg/kg)</td>
<td>0.051</td>
<td>0.868</td>
</tr>
<tr>
<td>Chol (mg/dl)</td>
<td>0.128</td>
<td>0.676</td>
</tr>
<tr>
<td>7DHC (mg/dl)</td>
<td>-0.179</td>
<td>0.541</td>
</tr>
<tr>
<td>8DHC (mg/dl)</td>
<td>-0.107</td>
<td>0.715</td>
</tr>
</tbody>
</table>
Discussion

- Rationale for considering high cholesterol diet with statin as potential therapy
 - Whole body cholesterol pool size enhanced by high cholesterol diet combined with simvastatin
- Simvastatin
 - Inhibits HMGCo-A reductase, blocking cholesterol synthesis as a way to avoid the formation of large amounts of 7-DHC and 8-DHC
- First reported study utilize stable isotope technique to assess cholesterol pool size in children
Acknowledgments

- Patients and families
- Sterol & Isoprenoid research consortium
- Rare Diseases Clinical Research network
 - RDCRN Travel award

- Funding:
 - NIH R01 HL073980,
 - NIH U54 HD061939