Skip to main content

Research Publications

Browse scientific publications from the NIH-funded RDCRN network and its 20 consortia or research teams to find information about rare disease research and read rare disease publications. Publications are sorted by consortium and year.

>  Click on the arrow to the left of a citation to view a summary of the publication, where available.

Brain AVM compactness score in children with hereditary hemorrhagic telangiectasia. Beslow LA, Vossough A, Kim H, Nelson J, Lawton MT, Pollak J, Lin DDM, Ratjen F, Hammill AM, Hetts SW, Gossage JR, Whitehead KJ, Faughnan ME, Krings T; Brain Vascular Malformation Consortium HHT Investigator Group. Childs Nerv Syst. 2024 Mar 22. doi: 10.1007/s00381-024-06366-z. Online ahead of print.

De Novo Brain Vascular Malformations in Hereditary Hemorrhagic Telangiectasia. Beslow LA, Krings T, Kim H, Hetts SW, Lawton MT, Ratjen F, Whitehead KJ, Gossage JR, McCulloch CE, Clancy M, Bagheri N, Faughnan ME. Pediatr Neurol. 2024 Jun;155:120-125. doi: 10.1016/j.pediatrneurol.2024.03.013. Epub 2024 Mar 22. PMID: 38631080; PMCID: PMC11102835.

Hereditary hemorrhagic telangiectasia (HHT) is an inherited disorder of the blood vessels that can cause excessive bleeding. About 10% of individuals with HHT have brain vascular malformations, which occur when the blood vessels in the brain develop abnormally. Children with HHT are screened for brain vascular malformations upon initial diagnosis, and many North American centers rescreen children for brain vascular malformations at interval throughout childhood. However, not much is known about whether people with HHT can develop new brain vascular malformations over time.

In this study, researchers investigated the formation of new brain vascular malformations in patients with HHT. The team analyzed data from 1,909 patients enrolled in the Brain Vascular Malformation Consortium natural history study, searching for brain vascular malformations that were new since previous imaging was performed.

Results showed that 409 patients had brain vascular malformations, with three showing new malformations confirmed by neuroimaging review. These findings demonstrate that patients with HHT can form new brain vascular malformations over time, though this is probably a rare occurrence. Authors note that more information about the frequency of new brain vascular malformation formation is needed.

Mild Hypoxia Accelerates Cerebral Cavernous Malformation Disease Through CX3CR1-CX3CL1 Signaling. Frias-Anaya E, Gallego-Gutierrez H, Gongol B, Weinsheimer S, Lai CC, Orecchioni M, Sriram A, Bui CM, Nelsen B, Hale P, Pham A, Shenkar R, DeBiasse D, Lightle R, Girard R, Li Y, Srinath A, Daneman R, Nudleman E, Sun H, Guma M, Dubrac A, Mesarwi OA, Ley K, Kim H, Awad IA, Ginsberg MH, Lopez-Ramirez MA. Arterioscler Thromb Vasc Biol. 2024 Jun;44(6):1246-1264. doi: 10.1161/ATVBAHA.123.320367. Epub 2024 Apr 25.

Quantification of enlarged deep medullary vein volumes in Sturge-Weber syndrome. Jeong JW, Lee MH, Luat AF, Xuan Y, Haacke EM, Juhász C. Quant Imaging Med Surg. 2024 Feb 1;14(2):1916-1929. doi: 10.21037/qims-23-1271. Epub 2024 Jan 23. PMID: 38415136; PMCID: PMC10895099.

Sturge-Weber syndrome (SWS) is a condition resulting in abnormal blood vessel formation in the brain, eyes, and skin at birth. In patients with SWS, enlarged deep medullary veins—mostly located in the white matter in the brain—may form early and can expand during the first years of life to provide compensatory collateral venous drainage of brain regions affected by leptomeningeal venous malformations localized on the brain surface.

The extent of enlarged deep veins during the early SWS disease course could be an imaging marker of this deep venous remodeling in an attempt to compensate for impaired brain surface venous blood flow. In this prospective imaging study, researchers used brain magnetic resonance imaging (MRI) to develop and optimize a quantitative approach to measure deep vein volumes in the affected brain of young patients with SWS and compare the findings to those of their healthy siblings. 

By combining two types of MRI (susceptibility-weighted imaging and volumetric T1 images), the authors were able to measure the volumes of deep veins, which were 10-12 fold higher than venous volumes in their healthy siblings. Greater deep vein volumes were associated with lower cortical surface area of the affected hemisphere, a measure of cortical atrophy. This new analytic approach of brain MRI can provide an objective way to assess the extent of deep venous remodeling in SWS and other disorders affecting the medullary veins of the brain.

A feasibility study for quantitative assessment of cerebrovascular malformations using flutriciclamide ([(18)F]GE-180) PET/MRI. Kim SJW, Lupo JM, Chen Y, Pampaloni MH, VanBrocklin HF, Narvid J, Kim H, Seo Y. Front Med (Lausanne). 2023 Apr 5;10:1091463. doi: 10.3389/fmed.2023.1091463. eCollection 2023.

Comparing Characteristics and Treatment of Brain Vascular Malformations in Children and Adults with HHT. Kilian A, Latino GA, White AJ, Ratjen F, McDonald J, Whitehead KJ, Gossage JR, Krings T, Lawton MT, Kim H, Faughnan ME, The Brain Vascular Malformation Consortium Hht Investigator Group. J Clin Med. 2023 Apr 4;12(7):2704. doi: 10.3390/jcm12072704.

Deep Venous Remodeling in Unilateral Sturge-Weber Syndrome: Robust Hemispheric Differences and Clinical Correlates. Juhász C, Luat AF, Behen ME, Gjolaj N, Jeong JW, Chugani HT, Kumar A. Pediatr Neurol. 2023 Feb;139:49-58. doi: 10.1016/j.pediatrneurol.2022.11.011. Epub 2022 Nov 25. PMID: 36521316; PMCID: PMC9840672.

Sturge-Weber syndrome (SWS) is a condition resulting in abnormal blood vessel development in the brain, eyes, and skin at birth. In patients with SWS, enlarged deep medullary veins (EDMVs)—located in the white matter in the brain—could allow for drainage of brain regions affected by leptomeningeal venous malformations (LVM), a type of vascular malformation of the brain. In this study, researchers evaluated the prevalence, extent, hemispheric differences, and clinical correlates of EDMVs in SWS. Fifty children with SWS underwent brain magnetic resonance imaging that included susceptibility weighted imaging, as well as neurocognitive evaluations. The team then assessed the extent of EDMVs, comparing between patients with right and left hemispheric SWS. Results show that EDMVs are common in SWS. For patients with right hemispheric SWS, extensive EDMVs appear to develop more commonly and earlier than in left hemispheric SWS. Authors note that deep venous remodeling may contribute to better clinical outcomes in some patients with SWS.

Intracranial Hemorrhage Rate and Lesion Burden in Patients With Familial Cerebral Cavernous Malformation. Weinsheimer S, Nelson J, Abla AA, Ko NU, Tsang C, Okoye O, Zabramski JM, Akers A, Zafar A, Mabray MC, Hart BL, Morrison L, McCulloch CE, Kim H; Brain Vascular Malformation Consortium Cerebral Cavernous Malformation Investigator Group. J Am Heart Assoc. 2023 Feb 7;12(3):e027572. doi: 10.1161/JAHA.122.027572. Epub 2023 Jan 25. PMID: 36695309; PMCID: PMC9973654.

Familial cerebral cavernous malformation (CCM) is an inherited disease characterized by abnormally enlarged spaces in the brain where blood collects near irregularly shaped, enlarged capillaries (tiny blood vessels) which have abnormally thin walls prone to leaking. CCM can cause intracranial hemorrhage (ICH), which can lead to death or long-term neurological damage. However, few studies have focused on ICH rates and risk factors in familial CCM.

In this study, researchers report ICH rates and assess whether CCM lesion burden—a disease severity marker—is associated with risk of symptomatic ICH in familial CCM. The team studied 386 patients with familial CCM with follow‐up data enrolled in the Brain Vascular Malformation Consortium CCM Project.

Results show that patients with familial CCM with a prior history of an ICH event are at higher risk for rehemorrhage during follow‐up. In addition, CCM lesion burden is significantly associated with an increased risk of subsequent symptomatic ICH. Authors note that these findings demonstrate the importance of lesion burden as a predictor of patient outcomes, which can also help to assess patient risk.

Prevalence and Characteristics of Intracranial Aneurysms in Hereditary Hemorrhagic Telangiectasia. Cheng HC, Faughnan ME, terBrugge KG, Liu HM, Krings T; Brain Vascular Malformation Consortium Hereditary Hemorrhagic Telangiectasia Investigator Group. AJNR Am J Neuroradiol. 2023 Dec 11;44(12):1367-1372. doi: 10.3174/ajnr.A8058. PMID: 38050014; PMCID: PMC10714847.

The Potential Role of MiRs-139-5p and -454-3p in Endoglin-Knockdown-Induced Angiogenic Dysfunction in HUVECs. Cannavicci A, Zhang Q, Kutryk MJB. Int J Mol Sci. 2023 Mar 3;24(5):4916. doi: 10.3390/ijms24054916.

A novel somatic mutation in GNAQ in a capillary malformation provides insight into molecular pathogenesis. Galeffi F, Snellings DA, Wetzel-Strong SE, Kastelic N, Bullock J, Gallione CJ, North PE, Marchuk DA. Angiogenesis. 2022 May 30. doi: 10.1007/s10456-022-09841-w. Epub ahead of print. PMID: 35635655.

Sturge-Weber syndrome (SWS) is a condition resulting in abnormal blood vessel development in the brain, eyes, and skin at birth. A hallmark feature is capillary malformation, also known as a port-wine birthmark (a red, pink, or purple facial birthmark). SWS and capillary malformations are both caused by mutations in the GNAQ gene. In this study, researchers sequenced skin biopsies of capillary malformations from nine patients. They identified the same type of GNAQ mutation (R183Q) in nearly all samples. However, one sample exhibited a new type of GNAQ mutation (Q209R). To explore its effects, the team compared this new mutation with other GNAQ mutations. The authors found that although the different mutations varied in signaling strength, they all had the same effects in cells. Since some of these same mutations are also found in cancer, pharmaceutical companies are working on inhibiting the effects of this gene. Thus, drugs that may work for certain cancers with GNAQ mutations may also work for SWS.

A single-cell atlas of the normal and malformed human brain vasculature. Winkler EA, Kim CN, Ross JM, Garcia JH, Gil E, Oh I, Chen LQ, Wu D, Catapano JS, Raygor K, Narsinh K, Kim H, Weinsheimer S, Cooke DL, Walcott BP, Lawton MT, Gupta N, Zlokovic BV, Chang EF, Abla AA, Lim DA, Nowakowski TJ. Science. 2022 Mar 4;375(6584):eabi7377. doi: 10.1126/science.abi7377. Epub 2022 Mar 4.

Endoluminal Biopsy for Molecular Profiling of Human Brain Vascular Malformations. Winkler E, Wu D, Gil E, McCoy D, Narsinh K, Sun Z, Mueller K, Ross J, Kim H, Weinsheimer S, Berger M, Nowakowski T, Lim D, Abla A, Cooke D. Neurology. 2022 Apr 19;98(16):e1637-e1647. doi: 10.1212/WNL.0000000000200109. Epub 2022 Feb 10.

Maximizing Brain Health After Hemorrhagic Stroke: Bugher Foundation Centers of Excellence. Sheth KN, Anderson CD, Biffi A, Dlamini N, Falcone GJ, Fox CK, Fullerton HJ, Greenberg SM, Hemphill JC, Kim A, Kim H, Ko NU, Roland JL, Sansing LH, van Veluw SJ, Rosand J. Stroke. 2022 Mar;53(3):1020-1029. doi: 10.1161/STROKEAHA.121.036197. Epub 2022 Feb 3.

MicroRNA-132-3p, Downregulated in Myeloid Angiogenic Cells from Hereditary Hemorrhagic Telangiectasia Patients, Is Enriched in the TGFβ and PI3K/AKT Signalling Pathways. Cannavicci A, Zhang Q, Faughnan ME, Kutryk MJB. Genes (Basel). 2022 Apr 9;13(4):665. doi: 10.3390/genes13040665.

Neurovascular Complications and Pulmonary Arteriovenous Malformation Feeding Artery Size. Ananiadis T, Faughnan ME, Clark D, Prabhudesai V, Kim H, Lawton MT, Vozoris NT; Brain Vascular Malformation Consortium HHT Investigator Group. Ann Am Thorac Soc. 2022 Apr 20. doi: 10.1513/AnnalsATS.202202-130RL. Online ahead of print.

Quantification metrics for telangiectasia using optical coherence tomography. Cardinell JL, Ramjist JM, Chen C, Shi W, Nguyen NQ, Yeretsian T, Choi M, Chen D, Clark DS, Curtis A, Kim H, Faughnan ME, Yang VXD; Brain Vascular Malformation Consortium HHT Investigator Group. Sci Rep. 2022 Feb 2;12(1):1805. doi: 10.1038/s41598-022-05272-1.

Robotics for neuroendovascular intervention: Background and primer. Narsinh KH, Paez R, Mueller K, Caton MT, Baker A, Higashida RT, Halbach VV, Dowd CF, Amans MR, Hetts SW, Norbash AM, Cooke DL. Neuroradiol J. 2022 Feb;35(1):25-35. doi: 10.1177/19714009211034829. Epub 2021 Aug 16.

Updates on Sturge-Weber Syndrome. Yeom S, Comi AM. Stroke. 2022 Dec;53(12):3769-3779. doi: 10.1161/STROKEAHA.122.038585. Epub 2022 Oct 20.

Assessing the association of common genetic variants in EPHB4 and RASA1 with phenotype severity in familial cerebral cavernous malformation. Choksi F, Weinsheimer S, Nelson J, Pawlikowska L, Fox CK, Zafar A, Mabray MC, Zabramski J, Akers A, Hart BL, Morrison L, McCulloch CE, Kim H. Mol Genet Genomic Med. 2021 Sep 7:e1794. doi: 10.1002/mgg3.1794. Online ahead of print.

Cerebral cavernous malformations (CCMs) are collections of small blood vessels in the brain that are enlarged and irregular in structure, leading to altered blood flow. While approximately 25 percent of individuals with CCMs never experience any related medical problems, other people with CCMs may experience serious symptoms such as headaches, seizures, paralysis, hearing or vision deficiencies, and cerebral hemorrhage. In addition to lesions in the brain, familial cases have lesions present on the skin. Interestingly, similar appearing skin lesions have been reported in another inherited vascular disease called capillary malformation-arteriovenous malformation (CM-AVM), which is caused by mutations in RASA1 and EPHB4. In this study, researchers investigated whether common variants in the EPHB4 and RASA1 genes are associated with familial CCM disease severity, including intracranial hemorrhage (ICH), total lesions, and large lesion counts. They found that EPHB4 variants were not associated with CCM severity, but a common RASA1 variant may be associated with ICH and large lesion count. These findings could improve understanding of the natural history of CCM, leading to better predictions of disease course and new medical therapies for treatment.

Combined Use of X-ray Angiography and Intraprocedural MRI Enables Tissue-based Decision Making Regarding Revascularization during Acute Ischemic Stroke Intervention. Narsinh KH, Kilbride BF, Mueller K, Murph D, Copelan A, Massachi J, Vitt J, Sun CH, Bhat H, Amans MR, Dowd CF, Halbach VV, Higashida RT, Moore T, Wilson MW, Cooke DL, Hetts SW. Radiology. 2021 Apr;299(1):167-176. doi: 10.1148/radiol.2021202750. Epub 2021 Feb 9.

Consensus Statement for the Management and Treatment of Sturge-Weber Syndrome: Neurology, Neuroimaging, and Ophthalmology Recommendations. Sabeti S, Ball KL, Bhattacharya SK, Bitrian E, Blieden LS, Brandt JD, Burkhart C, Chugani HT, Falchek SJ, Jain BG, Juhasz C, Loeb JA, Luat A, Pinto A, Segal E, Salvin J, Kelly KM. Pediatr Neurol. 2021 Aug;121:59-66. doi: 10.1016/j.pediatrneurol.2021.04.013. Epub 2021 May 6.

Cyclo-oxygenase 2, a putative mediator of vessel remodeling, is expressed in the brain AVM vessels and associates with inflammation. Keränen S, Suutarinen S, Mallick R, Laakkonen JP, Guo D, Pawlikowska L, Jahromi BR, Rauramaa T, Ylä-Herttuala S, Marchuk D, Krings T, Koivisto T, Lawton M, Radovanovic I, Kim H, Faughnan ME, Frösen J. Acta Neurochir (Wien). 2021 Sep;163(9):2503-2514. doi: 10.1007/s00701-021-04895-z. Epub 2021 Jun 29.

Brain ateriovenous malformations (bAVM) are rare vascular anomalies that may bleed causing epilepsy, neurological deficits, or death. Cyclo-oxygenase-2 (COX2) is an enzyme that plays a key role in promoting inflammation. Researchers examined tissue samples from surgery of 139 patients with bAVMs and compared them to 21 normal samples. They were seeking to determine if COX2 is expressed in bAVMs and whether it associates with inflammation and hemorrhage in these lesions. They concluded that COX2 is induced in bAVMs, and possibly participates in the regulation of vessel wall remodeling and ongoing inflammation. Authors suggest that COX2 may be a target for drug therapy stabilizing bAVMs.  

Endoglin deficiency impairs VEGFR2 but not FGFR1 or TIE2 activation and alters VEGF-mediated cellular responses in human primary endothelial cells. Zhang Q, Wang C, Cannavicci A, Faughnan ME, Kutryk MJB. Transl Res. 2021 Sep;235:129-143. doi: 10.1016/j.trsl.2021.04.005. Epub 2021 Apr 22.

Hereditary hemorrhagic telangiectasia (HHT) is an inherited disorder of the blood vessels that can cause excessive bleeding. People with HHT can develop abnormal blood vessels called arteriovenous malformations (AVMs) in several areas of the body, including the skin, brain, lungs, liver, or intestines. Endoglin (ENG) is one of the genes commonly mutated in this autosomal dominant disease. In this study, researchers sought to investigate the interplay of the ENG gene with several other genes in endothelial cells. They found that ENG deficiency alters the vascular endothelial growth factor (VEGF)/VEGFR2 pathway, which may play a role in the development of HHT.

Identification of a Mosaic Activating Mutation in GNA11 in Atypical Sturge-Weber Syndrome. Thorpe J, Frelin LP, McCann M, Pardo CA, Cohen BA, Comi AM, Pevsner J. J Invest Dermatol. 2021 Mar;141(3):685-688. doi: 10.1016/j.jid.2020.03.978. Epub 2020 Aug 7.

Intracranial hemorrhage due to central venous occlusion from hemodialysis access: A case report. Mirza MH, Schwertner A, Kohlbrenner R, Dowd CF, Narsinh KH. Interdiscip Neurosurg. 2021 Jun;24:101081. doi: 10.1016/j.inat.2020.101081. Epub 2021 Jan 4.

Intrasaccular flow disruption (WEB) of a large wide-necked basilar apex aneurysm using PulseRider-assistance. Narsinh KH, Caton MT, Mahmood NF, Higashida RT, Halbach VV, Hetts SW, Amans MR, Dowd CF, Cooke DL. Interdiscip Neurosurg. 2021 Jun;24:101072. doi: 10.1016/j.inat.2020.101072. Epub 2020 Dec 29.

Multicenter Research Data of Epilepsy Management in Patients With Sturge-Weber Syndrome. Smegal LF, Sebold AJ, Hammill AM, Juhász C, Lo WD, Miles DK, Wilfong AA, Levin AV, Fisher B, Ball KL, Pinto AL, Comi AM; National Institutes of Health Sponsor: Rare Disease Clinical Research Consortium (RDCRN) Brain Vascular Malformation Consortium (BVMC) SWS Investigator Group. Pediatr Neurol. 2021 Jun;119:3-10. doi: 10.1016/j.pediatrneurol.2021.02.006. Epub 2021 Mar 5.

Pilot investigation of circulating angiogenic and inflammatory biomarkers associated with vascular malformations. Wetzel-Strong SE, Weinsheimer S, Nelson J, Pawlikowska L, Clark D, Starr MD, Liu Y, Kim H, Faughnan ME, Nixon AB, Marchuk DA. Orphanet J Rare Dis. 2021 Sep 3;16(1):372. doi: 10.1186/s13023-021-02009-7.

Vascular malformations are growths composed of blood vessels involving arteries, veins, capillaries, and lymphatics. Patients with vascular malformations in the central nervous system may experience a range of debilitating or life-threatening symptoms including seizures, headaches, and increased risk of cerebral hemorrhage. Due to their inaccessible location, these malformations are difficult to monitor and treat. Therefore, biomarkers from a non-invasive tissue source, such as blood, may aid in predicting disease severity and outcomes. In this study, researchers compared circulating biomarker levels in plasma from patients with sporadic brain arteriovenous malformation (BAVM), familial cerebral cavernous malformations (CCM), and hereditary hemorrhagic telangiectasia (HHT). They found that biomarkers may be unique to each type of vascular malformation, indicating potential usefulness in assessing phenotypic traits of vascular malformations.

Predictors of mortality in patients with hereditary hemorrhagic telangiectasia. Thompson KP, Nelson J, Kim H, Pawlikowska L, Marchuk DA, Lawton MT, Faughnan ME; Brain Vascular Malformation Consortium HHT Investigator Group. Orphanet J Rare Dis. 2021 Jan 6;16(1):12. doi: 10.1186/s13023-020-01579-2.

Quantitative EEG improves prediction of Sturge-Weber syndrome in infants with port-wine birthmark. Gill RE, Tang B, Smegal L, Adamek JH, McAuliffe D, Lakshmanan BM, Srivastava S, Quain AM, Sebold AJ, Lin DDM, Kossoff EH, Caffo B, Comi AM, Ewen JB. Clin Neurophysiol. 2021 Oct;132(10):2440-2446. doi: 10.1016/j.clinph.2021.06.030. Epub 2021 Aug 5.

Seizure Incidence Rates in Children and Adults With Familial Cerebral Cavernous Malformations. Fox CK, Nelson J, McCulloch CE, Weinsheimer S, Pawlikowska L, Hart B, Mabray M, Zafar A, Morrison L, Zabramski JM, Akers A, Kim H. Neurology. 2021 Aug 13;97(12):e1210-6. doi: 10.1212/WNL.0000000000012569. Online ahead of print.

Sirolimus Treatment in Sturge-Weber Syndrome. Sebold AJ, Day AM, Ewen J, Adamek J, Byars A, Cohen B, Kossoff EH, Mizuno T, Ryan M, Sievers J, Smegal L, Suskauer SJ, Thomas C, Vinks A, Zabel TA, Hammill AM, Comi AM. Pediatr Neurol. 2021 Feb;115:29-40. doi: 10.1016/j.pediatrneurol.2020.10.013. Epub 2020 Nov 2.

Systemic and CNS manifestations of inherited cerebrovascular malformations. Hart BL, Mabray MC, Morrison L, Whitehead KJ, Kim H. Clin Imaging. 2021 Jul;75:55-66. doi: 10.1016/j.clinimag.2021.01.020. Epub 2021 Jan 20.

Review paper examines imaging and clinical features of cerebrovascular malformations with a genetic basis, summarizing the current state of knowledge of these conditions, salient features regarding mechanisms of development, and treatment prospects.

Utility of modified Rankin Scale for brain vascular malformations in hereditary hemorrhagic telangiectasia. Thompson KP, Nelson J, Kim H, Weinsheimer SM, Marchuk DA, Lawton MT, Krings T, Faughnan ME; Brain Vascular Malformation Consortium HHT Investigator Group. Orphanet J Rare Dis. 2021 Sep 19;16(1):390. doi: 10.1186/s13023-021-02012-y.

Brain Arteriovenous Malformation Recurrence After Apparent Microsurgical Cure: Increased Risk in Children Who Present With Arteriovenous Malformation Rupture. Copelan A, Drocton G, Caton MT, Smith ER, Cooke DL, Nelson J, Abla AA, Fox C, Amans MR, Dowd CF, Halbach VV, Higashida RT, Lawton MT, Kim H, Fullerton HJ, Gupta N, Hetts SW; UCSF Center For Cerebrovascular Research and UCSF Pediatric Brain Center. Stroke. 2020 Oct;51(10):2990-2996. doi: 10.1161/STROKEAHA.120.030135. Epub 2020 Sep 11.

Clinical outcomes after revascularization for pediatric moyamoya disease and syndrome: A single-center series. Morshed RA, Abla AA, Murph D, Dao JM, Winkler EA, Burkhardt JK, Colao K, Hetts SW, Fullerton HJ, Lawton MT, Gupta N, Fox CK. J Clin Neurosci. 2020 Sep;79:137-143. doi: 10.1016/j.jocn.2020.07.016. Epub 2020 Aug 19.

Computed tomography perfusion abnormalities after carotid endarterectomy help in the diagnosis of reversible cerebral vasoconstriction syndrome. Isikbay M, Narsinh KH, Arroyo S, Smith WS, Cooke DL, Higashida RT, Amans MR. J Vasc Surg Cases Innov Tech. 2020 Oct 27;7(1):171-175. doi: 10.1016/j.jvscit.2020.10.010. eCollection 2021 Mar.

Cutaneous findings of familial cerebral cavernous malformation syndrome due to the common Hispanic mutation. Manole AK, Forrester VJ, Zlotoff BJ, Hart BL, Morrison LA. Am J Med Genet A. 2020 May;182(5):1066-1072. doi: 10.1002/ajmg.a.61519. Epub 2020 Feb 26.

Effect of Simvastatin on Permeability in Cerebral Cavernous Malformation Type 1 Patients: Results from a Pilot Small Randomized Controlled Clinical Trial. Mabray MC, Caprihan A, Nelson J, McCulloch CE, Zafar A, Kim H, Hart BL, Morrison L. Transl Stroke Res. 2020 Jun;11(3):319-321. doi: 10.1007/s12975-019-00737-4. Epub 2019 Oct 23.

Genome-wide Genotyping of Cerebral Cavernous Malformation Type 1 Individuals to Identify Genetic Modifiers of Disease Severity. Choquet H, Kim H. Methods Mol Biol. 2020;2152:77-84. doi: 10.1007/978-1-0716-0640-7_6.

Genotype-Phenotype Correlations in Children with HHT. Kilian A, Latino GA, White AJ, Clark D, Chakinala MM, Ratjen F, McDonald J, Whitehead K, Gossage JR, Lin D, Henderson K, Pollak J, McWilliams JP, Kim H, Lawton MT, Faughnan ME; the Brain Vascular Malformation Consortium HHT Investigator Group. J Clin Med. 2020 Aug 22;9(9):2714. doi: 10.3390/jcm9092714.

High Prevalence of Spinal Cord Cavernous Malformations in the Familial Cerebral Cavernous Malformations Type 1 Cohort. Mabray MC, Starcevich J, Hallstrom J, Robinson M, Bartlett M, Nelson J, Zafar A, Kim H, Morrison L, Hart BL. AJNR Am J Neuroradiol. 2020 Jun;41(6):1126-1130. doi: 10.3174/ajnr.A6584. Epub 2020 May 28.

Interrater Reliability in the Measurement of Flow Characteristics on Color-Coded Quantitative DSA of Brain AVMs. Narsinh KH, Mueller K, Nelson J, Massachi J, Murph DC, Copelan AZ, Hetts SW, Halbach VV, Higashida RT, Abla AA, Amans MR, Dowd CF, Kim H, Cooke DL. AJNR Am J Neuroradiol. 2020 Dec;41(12):2303-2310. doi: 10.3174/ajnr.A6846. Epub 2020 Oct 29.

Non-Coding RNAs and Hereditary Hemorrhagic Telangiectasia. Cannavicci A, Zhang Q, Kutryk MJB. J Clin Med. 2020 Oct 17;9(10):3333. doi: 10.3390/jcm9103333.

Permissive microbiome characterizes human subjects with a neurovascular disease cavernous angioma. Polster SP, Sharma A, Tanes C, Tang AT, Mericko P, Cao Y, Carrión-Penagos J, Girard R, Koskimäki J, Zhang D, Stadnik A, Romanos SG, Lyne SB, Shenkar R, Yan K, Lee C, Akers A, Morrison L, Robinson M, Zafar A, Bittinger K, Kim H, Gilbert JA, Kahn ML, Shen L, Awad IA. Nat Commun. 2020 May 27;11(1):2659. doi: 10.1038/s41467-020-16436-w.

Recent Administration of Iodinated Contrast Renders Core Infarct Estimation Inaccurate Using RAPID Software. Copelan AZ, Smith ER, Drocton GT, Narsinh KH, Murph D, Khangura RS, Hartley ZJ, Abla AA, Dillon WP, Dowd CF, Higashida RT, Halbach VV, Hetts SW, Cooke DL, Keenan K, Nelson J, Mccoy D, Ciano M, Amans MR. AJNR Am J Neuroradiol. 2020 Dec;41(12):2235-2242. doi: 10.3174/ajnr.A6908. Epub 2020 Nov 19.

Subjective Cognitive Concerns and Attitudes toward Genetic Testing Are Associated with Depressive Symptoms and Quality of Life after Genetic Testing for the Cerebral Cavernous Malformation Common Hispanic Mutation (CCM1). Campbell R, Petranovich CL, Cheek S, Morrison L, Hart B. J Behav Brain Sci. 2020 Feb;10(2):118-127. doi: 10.4236/jbbs.2020.102007. Epub 2020 Feb 25.

The Expanding Cell Diversity of the Brain Vasculature. Ross JM, Kim C, Allen D, Crouch EE, Narsinh K, Cooke DL, Abla AA, Nowakowski TJ, Winkler EA. Front Physiol. 2020 Dec 3;11:600767. doi: 10.3389/fphys.2020.600767. eCollection 2020.

Vertebral Intraosseous Vascular Malformations in a Familial Cerebral Cavernous Malformation Population: Prevalence, Histologic Features, and Associations With CNS Disease. Tandberg SR, Bocklage T, Bartlett MR, Morrison LA, Nelson J, Hart BL. AJR Am J Roentgenol. 2020 Feb;214(2):428-436. doi: 10.2214/AJR.19.21492. Epub 2019 Dec 11.

A theory for polymicrogyria and brain arteriovenous malformations in HHT. Klostranec JM, Chen L, Mathur S, McDonald J, Faughnan ME, Ratjen F, Krings T. Neurology. 2019 Jan 1;92(1):34-42. doi: 10.1212/WNL.0000000000006686.

Angiopoietin-2 predicts morbidity in adults with Fontan physiology. Shirali AS, Lluri G, Guihard PJ, Conrad MB, Kim H, Pawlikowska L, Boström KI, Iruela-Arispe ML, Aboulhosn JA. Sci Rep. 2019 Dec 4;9(1):18328. doi: 10.1038/s41598-019-54776-w.

Decreased levels of miR-28-5p and miR-361-3p and increased levels of insulin-like growth factor 1 mRNA in mononuclear cells from patients with hereditary hemorrhagic telangiectasia (1). Cannavicci A, Zhang Q, Dai SC, Faughnan ME, Kutryk MJB. Can J Physiol Pharmacol. 2019 Jun;97(6):562-569. doi: 10.1139/cjpp-2018-0508. Epub 2018 Dec 4.

Distinct cellular roles for PDCD10 define a gut-brain axis in cerebral cavernous malformation. Tang AT, Sullivan KR, Hong CC, Goddard LM, Mahadevan A, Ren A, Pardo H, Peiper A, Griffin E, Tanes C, Mattei LM, Yang J, Li L, Mericko-Ishizuka P, Shen L, Hobson N, Girard R, Lightle R, Moore T, Shenkar R, Polster SP, Roedel CJ, Li N, Zhu Q, Whitehead KJ, Zheng X, Akers A, Morrison L, Kim H, Bittinger K, Lengner CJ, Schwaninger M, Velcich A, Augenlicht L, Abdelilah-Seyfried S, Min W, Marchuk DA, Awad IA, Kahn ML. Sci Transl Med. 2019 Nov 27;11(520):eaaw3521. doi: 10.1126/scitranslmed.aaw3521.

Familial Cerebral Cavernous Malformations. Zafar A, Quadri SA, Farooqui M, Ikram A, Robinson M, Hart BL, Mabray MC, Vigil C, Tang AT, Kahn ML, Yonas H, Lawton MT, Kim H, Morrison L. Stroke. 2019 May;50(5):1294-1301. doi: 10.1161/STROKEAHA.118.022314.

Gαq and hyper-phosphorylated ERK expression in Sturge-Weber syndrome leptomeningeal blood vessel endothelial cells. Wellman RJ, Cho SB, Singh P, Tune M, Pardo CA, Comi AM; BVMC Sturge–Weber syndrome Project Workgroup. Vasc Med. 2019 Feb;24(1):72-75. doi: 10.1177/1358863X18786068. Epub 2018 Aug 16.

Hypothesis: Presymptomatic treatment of Sturge-Weber Syndrome With Aspirin and Antiepileptic Drugs May Delay Seizure Onset. Day AM, Hammill AM, Juhász C, Pinto AL, Roach ES, McCulloch CE, Comi AM; National Institutes of Health Sponsor: Rare Diseases Clinical Research Network (RDCRN) Brain and Vascular Malformation Consortium (BVMC) SWS Investigator Group. Pediatr Neurol. 2019 Jan;90:8-12. doi: 10.1016/j.pediatrneurol.2018.04.009. Epub 2018 Nov 24.

Physical and Family History Variables Associated With Neurological and Cognitive Development in Sturge-Weber Syndrome. Day AM, McCulloch CE, Hammill AM, Juhász C, Lo WD, Pinto AL, Miles DK, Fisher BJ, Ball KL, Wilfong AA, Levin AV, Thau AJ, Comi AM; National Institute of Health Sponsor: Rare Disease Clinical Research Consortium (RDCRN) Brain and Vascular Malformation Consortium (BVMC) SWS Investigator Group, Koenig JI, Lawton MT, Marchuk DA, Moses MA, Freedman SF, Pevsner J. Pediatr Neurol. 2019 Jul;96:30-36. doi: 10.1016/j.pediatrneurol.2018.12.002. Epub 2018 Dec 20.

Quality of Life in Children With Sturge-Weber Syndrome. Harmon KA, Day AM, Hammill AM, Pinto AL, McCulloch CE, Comi AM; National Institutes of Health Rare Disease Clinical Research Consortium (RDCRN) Brain and Vascular Malformation Consortium (BVMC) SWS Investigator Group. Pediatr Neurol. 2019 Dec;101:26-32. doi: 10.1016/j.pediatrneurol.2019.04.004. Epub 2019 Apr 24.

Sturge-Weber Syndrome Patient Registry: Delayed Diagnosis and Poor Seizure Control. Cho S, Maharathi B, Ball KL, Loeb JA, Pevsner J. J Pediatr. 2019 Dec;215:158-163.e6. doi: 10.1016/j.jpeds.2019.08.025. Epub 2019 Oct 3.

A Multidisciplinary Consensus for Clinical Care and Research Needs for Sturge-Weber Syndrome. De la Torre AJ, Luat AF, Juhász C, Ho ML, Argersinger DP, Cavuoto KM, Enriquez-Algeciras M, Tikkanen S, North P, Burkhart CN, Chugani HT, Ball KL, Pinto AL, Loeb JA. Pediatr Neurol. 2018 Jul;84:11-20. doi: 10.1016/j.pediatrneurol.2018.04.005. Epub 2018 Apr 18.

A user-guided tool for semi-automated cerebral microbleed detection and volume segmentation: Evaluating vascular injury and data labelling for machine learning. Morrison MA, Payabvash S, Chen Y, Avadiappan S, Shah M, Zou X, Hess CP, Lupo JM. Neuroimage Clin. 2018 Aug 4;20:498-505. doi: 10.1016/j.nicl.2018.08.002. eCollection 2018.

Association of common candidate variants with vascular malformations and intracranial hemorrhage in hereditary hemorrhagic telangiectasia. Pawlikowska L, Nelson J, Guo DE, McCulloch CE, Lawton MT, Kim H, Faughnan ME; Brain Vascular Malformation Consortium HHT Investigator Group. Mol Genet Genomic Med. 2018 May;6(3):350-356. doi: 10.1002/mgg3.377. Epub 2018 Mar 6.

Identification of a rare BMP pathway mutation in a non-syndromic human brain arteriovenous malformation via exome sequencing. Walcott BP, Winkler EA, Zhou S, Birk H, Guo D, Koch MJ, Stapleton CJ, Spiegelman D, Dionne-Laporte A, Dion PA, Kahle KT, Rouleau GA, Lawton MT. Hum Genome Var. 2018 Mar 8;5:18001. doi: 10.1038/hgv.2018.1. eCollection 2018.

Surgical Treatment vs Nonsurgical Treatment for Brain Arteriovenous Malformations in Patients with Hereditary Hemorrhagic Telangiectasia: A Retrospective Multicenter Consortium Study. Meybodi AT, Kim H, Nelson J, Hetts SW, Krings T, terBrugge KG, Faughnan ME, Lawton MT; Brain Vascular Malformation Consortium HHT Investigator Group. Neurosurgery. 2018 Jan 1;82(1):35-47. doi: 10.1093/neuros/nyx168.

Arterial Ischemic Stroke in Children and Young Adults. Lo WD, Kumar R. Continuum (Minneap Minn). 2017 Feb;23(1, Cerebrovascular Disease):158-180. doi: 10.1212/CON.0000000000000438.

Automated algorithm for counting microbleeds in patients with familial cerebral cavernous malformations. Zou X, Hart BL, Mabray M, Bartlett MR, Bian W, Nelson J, Morrison LA, McCulloch CE, Hess CP, Lupo JM, Kim H. Neuroradiology. 2017 Jul;59(7):685-690. doi: 10.1007/s00234-017-1845-8. Epub 2017 May 22.

Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Tang AT, Choi JP, Kotzin JJ, Yang Y, Hong CC, Hobson N, Girard R, Zeineddine HA, Lightle R, Moore T, Cao Y, Shenkar R, Chen M, Mericko P, Yang J, Li L, Tanes C, Kobuley D, Võsa U, Whitehead KJ, Li DY, Franke L, Hart B, Schwaninger M, Henao-Mejia J, Morrison L, Kim H, Awad IA, Zheng X, Kahn ML. Nature. 2017 May 18;545(7654):305-310. doi: 10.1038/nature22075. Epub 2017 May 10.

Enlargement of deep medullary veins during the early clinical course of Sturge-Weber syndrome. Pilli VK, Chugani HT, Juhász C. Neurology. 2017 Jan 3;88(1):103-105. doi: 10.1212/WNL.0000000000003455. Epub 2016 Nov 18.

Familial Cerebral Cavernous Malformations Are Associated with Adrenal Calcifications on CT Scans: An Imaging Biomarker for a Hereditary Cerebrovascular Condition. Strickland CD, Eberhardt SC, Bartlett MR, Nelson J, Kim H, Morrison LA, Hart BL. Radiology. 2017 Aug;284(2):443-450. doi: 10.1148/radiol.2017161127. Epub 2017 Mar 20.

Prevalence and predictors of anemia in hereditary hemorrhagic telangiectasia. Kasthuri RS, Montifar M, Nelson J, Kim H, Lawton MT, Faughnan ME; Brain Vascular Malformation Consortium HHT Investigator Group. Am J Hematol. 2017 Jun 22:10.1002/ajh.24832. doi: 10.1002/ajh.24832. Online ahead of print.

Reliability and Clinical Correlation of Transcranial Doppler Ultrasound in Sturge-Weber Syndrome. Offermann EA, Sreenivasan A, DeJong MR, Lin DDM, McCulloch CE, Chung MG, Comi AM; National Institute of Health Sponsor; Rare Disease Clinical Research Consortium (RDCRN); Brain and Vascular Malformation Consortium (BVMC); National Sturge-Weber Syndrome Workgroup. Pediatr Neurol. 2017 Sep;74:15-23.e5. doi: 10.1016/j.pediatrneurol.2017.04.026. Epub 2017 May 8.

Size of Facial Port-Wine Birthmark May Predict Neurologic Outcome in Sturge-Weber Syndrome. Dymerska M, Kirkorian AY, Offermann EA, Lin DD, Comi AM, Cohen BA. J Pediatr. 2017 Sep;188:205-209.e1. doi: 10.1016/j.jpeds.2017.05.053. Epub 2017 Jul 12.

Anticonvulsant Efficacy in Sturge-Weber Syndrome. Kaplan EH, Kossoff EH, Bachur CD, Gholston M, Hahn J, Widlus M, Comi AM. Pediatr Neurol. 2016 May;58:31-6. doi: 10.1016/j.pediatrneurol.2015.10.015. Epub 2016 Jan 11.

Brainstem cavernous malformations: Natural history versus surgical management. Walcott BP, Choudhri O, Lawton MT. J Clin Neurosci. 2016 Oct;32:164-5. doi: 10.1016/j.jocn.2016.03.021. Epub 2016 Jun 16.

Cytochrome P450 and matrix metalloproteinase genetic modifiers of disease severity in Cerebral Cavernous Malformation type 1. Choquet H, Trapani E, Goitre L, Trabalzini L, Akers A, Fontanella M, Hart BL, Morrison LA, Pawlikowska L, Kim H, Retta SF. Free Radic Biol Med. 2016 Mar;92:100-109. doi: 10.1016/j.freeradbiomed.2016.01.008. Epub 2016 Jan 19.

Leveraging a Sturge-Weber Gene Discovery: An Agenda for Future Research. Comi AM, Sahin M, Hammill A, Kaplan EH, Juhász C, North P, Ball KL, Levin AV, Cohen B, Morris J, Lo W, Roach ES; 2015 Sturge-Weber Syndrome Research Workshop. Pediatr Neurol. 2016 May;58:12-24. doi: 10.1016/j.pediatrneurol.2015.11.009. Epub 2016 Mar 16.

Molecular, Cellular, and Genetic Determinants of Sporadic Brain Arteriovenous Malformations. Walcott BP, Winkler EA, Rouleau GA, Lawton MT. Neurosurgery. 2016 Aug;63 Suppl 1(Suppl 1 CLINICAL NEUROSURGERY):37-42. doi: 10.1227/NEU.0000000000001300.

Predictive modeling and in vivo assessment of cerebral blood flow in the management of complex cerebral aneurysms. Walcott BP, Reinshagen C, Stapleton CJ, Choudhri O, Rayz V, Saloner D, Lawton MT. J Cereb Blood Flow Metab. 2016 Jun;36(6):998-1003. doi: 10.1177/0271678X16641125. Epub 2016 Mar 23.

The partnership of patient advocacy groups and clinical investigators in the rare diseases clinical research network. Merkel PA, Manion M, Gopal-Srivastava R, Groft S, Jinnah HA, Robertson D, Krischer JP; Rare Diseases Clinical Research Network. Orphanet J Rare Dis. 2016 May 18;11(1):66. doi: 10.1186/s13023-016-0445-8.

[Formula: see text]Intellectual and adaptive functioning in Sturge-Weber Syndrome. Kavanaugh B, Sreenivasan A, Bachur C, Papazoglou A, Comi A, Zabel TA. Child Neuropsychol. 2016;22(6):635-48. doi: 10.1080/09297049.2015.1028349. Epub 2015 May 8.

Armies of pestilence: CNS infections as potential weapons of mass destruction. Hart BL, Ketai L. AJNR Am J Neuroradiol. 2015 Jun;36(6):1018-25. doi: 10.3174/ajnr.A4177. Epub 2014 Dec 4.

Current Therapeutic Options in Sturge-Weber Syndrome. Comi A. Semin Pediatr Neurol. 2015 Dec;22(4):295-301. doi: 10.1016/j.spen.2015.10.005. Epub 2015 Nov 11.

Genetics of cerebral cavernous malformations: current status and future prospects. Choquet H, Pawlikowska L, Lawton MT, Kim H. J Neurosurg Sci. 2015 Sep;59(3):211-20. Epub 2015 Apr 22.

Hemorrhage rates from brain arteriovenous malformation in patients with hereditary hemorrhagic telangiectasia. Kim H, Nelson J, Krings T, terBrugge KG, McCulloch CE, Lawton MT, Young WL, Faughnan ME; Brain Vascular Malformation Consortium HHT Investigator Group. Stroke. 2015 May;46(5):1362-4. doi: 10.1161/STROKEAHA.114.007367. Epub 2015 Apr 9.

Increased number of white matter lesions in patients with familial cerebral cavernous malformations. Golden MJ, Morrison LA, Kim H, Hart BL. AJNR Am J Neuroradiol. 2015 May;36(5):899-903. doi: 10.3174/ajnr.A4200. Epub 2015 Jan 2.

Neurovascular manifestations in hereditary hemorrhagic telangiectasia: imaging features and genotype-phenotype correlations. Krings T, Kim H, Power S, Nelson J, Faughnan ME, Young WL, terBrugge KG; Brain Vascular Malformation Consortium HHT Investigator Group. AJNR Am J Neuroradiol. 2015 May;36(5):863-70. doi: 10.3174/ajnr.A4210. Epub 2015 Jan 8.

Sensitivity of patients with familial cerebral cavernous malformations to therapeutic radiation. Golden M, Saeidi S, Liem B, Marchand E, Morrison L, Hart B. J Med Imaging Radiat Oncol. 2015 Feb;59(1):134-6. doi: 10.1111/1754-9485.12269. Epub 2015 Jan 7.

Sturge-Weber syndrome. Comi AM. Handb Clin Neurol. 2015;132:157-68. doi: 10.1016/B978-0-444-62702-5.00011-1.

The ACVRL1 c.314-35A>G polymorphism is associated with organ vascular malformations in hereditary hemorrhagic telangiectasia patients with ENG mutations, but not in patients with ACVRL1 mutations. Pawlikowska L, Nelson J, Guo DE, McCulloch CE, Lawton MT, Young WL, Kim H, Faughnan ME; Brain Vascular Malformation Consortium HHT Investigator Group. Am J Med Genet A. 2015 Jun;167(6):1262-7. doi: 10.1002/ajmg.a.36936. Epub 2015 Apr 2.

Association of cardiovascular risk factors with disease severity in cerebral cavernous malformation type 1 subjects with the common Hispanic mutation. Choquet H, Nelson J, Pawlikowska L, McCulloch CE, Akers A, Baca B, Khan Y, Hart B, Morrison L, Kim H. Cerebrovasc Dis. 2014;37(1):57-63. doi: 10.1159/000356839. Epub 2013 Dec 21.

Histogram flow mapping with optical coherence tomography for in vivo skin angiography of hereditary hemorrhagic telangiectasia. Cheng KH, Mariampillai A, Lee KK, Vuong B, Luk TW, Ramjist J, Curtis A, Jakubovic H, Kertes P, Letarte M, Faughnan ME; Brain Vascular Malformation Consortium HHT Investigator Group, Yang VX. J Biomed Opt. 2014 Aug;19(8):086015. doi: 10.1117/1.JBO.19.8.086015.

Polymorphisms in inflammatory and immune response genes associated with cerebral cavernous malformation type 1 severity. Choquet H, Pawlikowska L, Nelson J, McCulloch CE, Akers A, Baca B, Khan Y, Hart B, Morrison L, Kim H; Brain Vascular Malformation Consortium (BVMC) Study. Cerebrovasc Dis. 2014;38(6):433-40. doi: 10.1159/000369200. Epub 2014 Dec 3.

Preliminary reliability and validity of a battery for assessing functional skills in children with Sturge-Weber syndrome. Reidy TG, Suskauer SJ, Bachur CD, McCulloch CE, Comi AM. Childs Nerv Syst. 2014 Dec;30(12):2027-36. doi: 10.1007/s00381-014-2573-6. Epub 2014 Oct 26.

Severity score for hereditary hemorrhagic telangiectasia. Latino GA, Kim H, Nelson J, Pawlikowska L, Young W, Faughnan ME; Brain Vascular Malformation Consortium HHT Investigator Group. Orphanet J Rare Dis. 2014 Dec 29;9:188. doi: 10.1186/s13023-014-0188-3.

Stimulant use in patients with sturge-weber syndrome: safety and efficacy. Lance EI, Lanier KE, Zabel TA, Comi AM. Pediatr Neurol. 2014 Nov;51(5):675-80. doi: 10.1016/j.pediatrneurol.2013.11.009. Epub 2013 Nov 21.

Aspirin use in Sturge-Weber syndrome: side effects and clinical outcomes. Lance EI, Sreenivasan AK, Zabel TA, Kossoff EH, Comi AM. J Child Neurol. 2013 Feb;28(2):213-8. doi: 10.1177/0883073812463607. Epub 2012 Oct 30.

Brain Vascular Malformation Consortium: Overview, Progress and Future Directions. Akers AL, Ball KL, Clancy M, Comi AM, Faughnan ME, Gopal-Srivastava R, Jacobs TP, Kim H, Krischer J, Marchuk DA, McCulloch CE, Morrison L, Moses M, Moy CS, Pawlikowska L, Young WL. J Rare Disord. 2013 Apr 1;1(1):5.

Case report of subdural hematoma in a patient with Sturge-Weber syndrome and literature review: questions and implications for therapy. Lopez J, Yeom KW, Comi A, Van Haren K. J Child Neurol. 2013 May;28(5):672-5. doi: 10.1177/0883073812449514. Epub 2012 Jul 17.

Dynamic contrast-enhanced MRI evaluation of cerebral cavernous malformations. Hart BL, Taheri S, Rosenberg GA, Morrison LA. Transl Stroke Res. 2013 Oct;4(5):500-6. doi: 10.1007/s12975-013-0285-y. Epub 2013 Sep 21.

Importance of utilizing a sensitive free thyroxine assay in Sturge-Weber syndrome. Siddique L, Sreenivasan A, Comi AM, Germain-Lee EL. J Child Neurol. 2013 Feb;28(2):269-74. doi: 10.1177/0883073812463606. Epub 2012 Oct 30.

Increased choroidal thickness in patients with Sturge-Weber syndrome. Arora KS, Quigley HA, Comi AM, Miller RB, Jampel HD. JAMA Ophthalmol. 2013 Sep;131(9):1216-9. doi: 10.1001/jamaophthalmol.2013.4044.

Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. Shirley MD, Tang H, Gallione CJ, Baugher JD, Frelin LP, Cohen B, North PE, Marchuk DA, Comi AM, Pevsner J. N Engl J Med. 2013 May 23;368(21):1971-9. doi: 10.1056/NEJMoa1213507. Epub 2013 May 8.

Sturge-weber syndrome. Bachur CD, Comi AM. Curr Treat Options Neurol. 2013 Oct;15(5):607-17. doi: 10.1007/s11940-013-0253-6.

Urine vascular biomarkers in Sturge-Weber syndrome. Sreenivasan AK, Bachur CD, Lanier KE, Curatolo AS, Connors SM, Moses MA, Comi AM. Vasc Med. 2013 Jun;18(3):122-8. doi: 10.1177/1358863X13486312.

Brain arteriovenous malformation multiplicity predicts the diagnosis of hereditary hemorrhagic telangiectasia: quantitative assessment. Bharatha A, Faughnan ME, Kim H, Pourmohamad T, Krings T, Bayrak-Toydemir P, Pawlikowska L, McCulloch CE, Lawton MT, Dowd CF, Young WL, Terbrugge KG. Stroke. 2012 Jan;43(1):72-8. doi: 10.1161/STROKEAHA.111.629865. Epub 2011 Oct 27.

Brain arteriovenous malformations associated with hereditary hemorrhagic telangiectasia: gene-phenotype correlations. Nishida T, Faughnan ME, Krings T, Chakinala M, Gossage JR, Young WL, Kim H, Pourmohamad T, Henderson KJ, Schrum SD, James M, Quinnine N, Bharatha A, Terbrugge KG, White RI Jr. Am J Med Genet A. 2012 Nov;158A(11):2829-34. doi: 10.1002/ajmg.a.35622. Epub 2012 Sep 18.

Updates and future horizons on the understanding, diagnosis, and treatment of Sturge-Weber syndrome brain involvement. Lo W, Marchuk DA, Ball KL, Juhász C, Jordan LC, Ewen JB, Comi A; Brain Vascular Malformation Consortium National Sturge-Weber Syndrome Workgroup. Dev Med Child Neurol. 2012 Mar;54(3):214-23. doi: 10.1111/j.1469-8749.2011.04169.x. Epub 2011 Dec 23.

Presentation, diagnosis, pathophysiology, and treatment of the neurological features of Sturge-Weber syndrome. Comi AM. Neurologist. 2011 Jul;17(4):179-84. doi: 10.1097/NRL.0b013e318220c5b6.

Familial versus sporadic cavernous malformations: differences in developmental venous anomaly association and lesion phenotype. Petersen TA, Morrison LA, Schrader RM, Hart BL. AJNR Am J Neuroradiol. 2010 Feb;31(2):377-82. doi: 10.3174/ajnr.A1822. Epub 2009 Oct 15.

Cranio-cervical abnormalities in moderate-to-severe osteogenesis imperfecta - Genotypic and phenotypic determinants. Marulanda J, Retrouvey JM, Lee B, Sutton VR; Members of the BBDC; Rauch F, Briner M. Orthod Craniofac Res. 2024 Apr;27(2):237-243. doi: 10.1111/ocr.12707. Epub 2023 Aug 29.

Cross-sectional and longitudinal analysis of bone age maturation during peri-pubertal growth in children with type I, III and IV osteogenesis imperfecta. Nicol LE, Baines H, Koike S, Liu W. Bone. 2024 Oct;187:117192. doi: 10.1016/j.bone.2024.117192. Epub 2024 Jul 4. PMID: 38969279; PMCID: PMC11324408.

Osteogenesis imperfecta (OI) is a group of inherited connective tissue disorders associated with a wide range of symptoms, including fragile bones that break easily. In typically developing children, radiographic images can reveal predictable patterns of changes in the size, shape, and mineralization of the hand and wrist bones. Known as the bone age, this metric can be used to assess time remaining for growth as well as the onset and duration of puberty, helping to determine the timing of surgeries or reveal deviations in a child’s growth pattern.

In this study, researchers explored bone age maturation during adolescent growth in patients with OI. The team compared radiographs of the hand and wrist in 159 children with OI ages 8 to 17 with healthy controls. Bone ages were repeated around two years later and analyzed by both an endocrinologist and automated program called BoneXpert.  

Results showed that in children with mild-to-moderate OI (types I and IV), skeletal maturation is comparable to healthy controls. For those with more severe forms of OI (type III), results showed a delayed pattern of skeletal maturation of less than a year at baseline and a delayed rate of maturation over the two-year follow-up. However, authors note that these differences may not be clinically significant, concluding that bone age can be used in the OI population in a way that is similar to the general pediatric population.

Current and Developing Pharmacologic Agents for Improving Skeletal Health in Adults with Osteogenesis Imperfecta. Liu W, Nicol L, Orwoll E. Calcif Tissue Int. 2024 Mar 12. doi: 10.1007/s00223-024-01188-2. Epub ahead of print. PMID: 38472351.

Osteogenesis imperfecta (OI) is a group of inherited connective tissue disorders associated with a wide range of symptoms, including fragile bones that break easily. Drugs to improve skeletal health—including those initially developed to treat osteoporosis as well as new bone-protective agents—are in various phases of clinical trials for adults with OI.

In this review article, researchers summarize current and developing pharmacologic agents for improving skeletal health in adults with OI. The team performed online database searches to review published studies and clinical trials.

Results include ongoing clinical trials for several therapeutics, including those that may be useful in improving bone mineral density. Authors note that clinical trials involving gene editing may be possible in the coming decade.

Genetic Evaluation for Monogenic Disorders of Low Bone Mass and Increased Bone Fragility: What Clinicians Need to Know. Busse E, Lee B, Nagamani SCS. Curr Osteoporos Rep. 2024 Apr 11. doi: 10.1007/s11914-024-00870-6. Epub ahead of print. PMID: 38600318.

Monogenic disorders of osteoporosis are characterized by low bone mass, increased bone fragility, and increased risk of fractures. There are currently over 50 different known types of these disorders, which are each caused by variations in a single gene. Widespread availability of clinical genetic testing offers an opportunity to correctly diagnose individuals with these disorders.

In this review paper, researchers discuss genetic testing for patients with suspected monogenic forms of osteoporosis. The team outlines the principles of clinical genetic testing and provides practical guidance for clinicians to navigate the process.

Authors note that clinicians should be aware of how to incorporate genetic testing into their practices, as these techniques could help identify the appropriate diagnosis for patients with low bone mass, multiple or unusual fractures, and severe or early-onset osteoporosis.

Osteogenesis Imperfecta: Skeletal and Non-skeletal Challenges in Adulthood. Hald JD, Langdahl B, Folkestad L, Wekre LL, Johnson R, Nagamani SCS, Raggio C, Ralston SH, Semler O, Tosi L, Orwoll E. Calcif Tissue Int. 2024 Jun 5. doi: 10.1007/s00223-024-01236-x. Online ahead of print.

Psychosocial Outcomes of Pain and Pain Management in Adults with Osteogenesis Imperfecta: A Qualitative Study. Shepherd WS, Wiese AD, Cho HE, Rork WC, Baig MU, Kostick KM, Nguyen D, Carter EM; Members of the BBDC; Murali CN, Robinson ME, Schneider SC, Lee B, Sutton VR, Storch EA. J Clin Psychol Med Settings. 2024 Jan 28. doi: 10.1007/s10880-023-09991-z. Epub ahead of print. PMID: 38281305.

Osteogenesis imperfecta (OI) is a genetic disorder characterized by bone fragility and fractures. Symptoms include short stature, dental abnormalities, hearing loss, scoliosis, and chronic pain. Although research on the functional outcomes of OI is growing, few studies are examining the psychosocial outcomes of pain in OI.

In this study, researchers interviewed 15 adults with OI to understand pain-related experiences. First, the team developed an interview guide focused on topics related to pain and mental health challenges. Next, the team interviewed participants and analyzed transcripts to identify common themes.

Results show that participants experience chronic and acute pain related to OI. Pharmacological treatments were the most common pain management approach. Participants reported negative pain outcomes, including limited daily functioning and activity participation, fear, anger, anxiety, depression, and difficulty concentrating. Participants also suggested that lack of physician and community knowledge on chronic pain in OI indirectly exacerbates both subjective pain intensity and outcomes.

Authors note that this study provides valuable exploration of the unique pain experiences of adults with OI that may have implications for proactive management, treatment development, and clinician training.

A qualitative exploration of patient perspectives on psychosocial burdens and positive factors in adults with osteogenesis imperfecta. Rork WC, Hertz AG, Wiese AD, Kostick KM, Nguyen D, Schneider SC, Shepherd WS, Cho H; Members of the BBDC; Murali CN, Lee B, Sutton VR, Storch EA. Am J Med Genet A. 2023 Sep;191(9):2267-2275. doi: 10.1002/ajmg.a.63323. Epub 2023 Jun 15. PMID: 37317786

Osteogenesis imperfecta (OI) is a group of inherited connective tissue disorders associated with a wide range of symptoms, including fragile bones that break easily. Although progress has been made in understanding the spectrum of physical symptoms, less is known about the impact of OI on psychosocial well-being, as well as factors that can help lessen negative outcomes.

In this study, researchers developed a qualitative approach to assess perspectives from individuals with OI on psychosocial burdens and positive factors related to OI. Among 15 adults with varying disease status, the team conducted semi-structured interviews and identified themes from responses.

Participants reported negative psychosocial outcomes related to bone fractures and recovery, uncertainty of future fractures, and self-image. Participants also described positive traits related to OI and their lived experience with a chronic disease. Authors note that these insights highlight a need for continued research on the relationship between OI disease status and psychosocial outcomes, as well as the development of psychological interventions designed for individuals with OI.

Approach to the Patient: Pharmacological therapies for fracture risk reduction in adults with osteogenesis imperfecta. Liu W, Lee B, Nagamani SCS, Nicol L, Rauch F, Rush ET, Sutton VR, Orwoll E. J Clin Endocrinol Metab. 2023 Jan 20:dgad035. doi: 10.1210/clinem/dgad035. Epub ahead of print. PMID: 36658750.

Osteogenesis imperfecta (OI) is a group of 21 rare, inherited disorders caused by 19 gene mutations resulting in fragile bones that break easily. The effectiveness of medications used for fracture reduction in adults with OI, as well as practice recommendations, are not well established.

In this review paper, researchers summarize current knowledge on pharmacologic treatment options for reducing fracture risk in adults with OI. In addition to manual searches of reference lists, the team performed a PubMed online database search of all study types published in the English language using the terms “osteogenesis imperfecta,” “OI,” and “brittle bone disease.”

Findings show that despite limited clinical trial data, bisphosphonate and teriparatide therapies may help improve bone mineral density in adults with OI. Authors state that further research is needed to develop medications for adults with OI that will lead to definite fracture rate reduction.

A multicenter study to evaluate pain characteristics in osteogenesis imperfecta. Rodriguez Celin M, Kruger KM, Caudill A, Murali CN, Nagamani SCS, Members Of The Brittle Bone Disorders Consortium Bbdc, Smith PA, Harris GF. Am J Med Genet A. 2023 Jan;191(1):160-172. doi: 10.1002/ajmg.a.63009. Epub 2022 Oct 22. PMID: 36271817; PMCID: PMC10399129.

Osteogenesis imperfecta (OI) is a group of rare, inherited disorders caused by gene mutations resulting in fragile bones that break easily. Symptoms include skeletal and joint deformities, hearing loss, a bluish tint to the sclerae (whites of the eyes), dental problems, respiratory problems, and chronic pain. In this study, researchers aimed to describe pain characteristics and treatments used in individuals with varying severity of OI, as well as investigate variables associated with pain. Using data from a natural history study of OI conducted by the Brittle Bone Disorders Consortium (BBDC), the team analyzed the prevalence, characteristics, treatments, and predictors of chronic pain. Among 861 individuals with OI, results showed that 41.8% had chronic pain, which was most frequently located in the back. Predictors of chronic pain for all OI types included age, use of a wheelchair, and number of fractures per year. Compared to participants without chronic pain, participants with chronic pain missed more days from school or work per year and performed worse in all mobility metrics. The most common treatments were nonsteroidal anti-inflammatory drugs and bisphosphonates. These results show that chronic pain is prevalent in OI across all types, affects mobility, and interferes with participation.

Craniofacial and dental phenotype of two girls with osteogenesis imperfecta due to mutations in CRTAP. Marulanda J, Ludwig K, Glorieux F, Lee B, Sutton VR; Members of the BBD Consortium; Retrouvey JM, Rauch F. Bone. 2022 Nov;164:116516. doi: 10.1016/j.bone.2022.116516. Epub 2022 Aug 12.

Targeting TGF-β for treatment of osteogenesis imperfecta. Song IW, Nagamani SC, Nguyen D, Grafe I, Sutton VR, Gannon FH, Munivez E, Jiang MM, Tran A, Wallace M, Esposito P, Musaad S, Strudthoff E, McGuire S, Thornton M, Shenava V, Rosenfeld S, Huang S, Shypailo R, Orwoll E, Lee B. J Clin Invest. 2022 Apr 1;132(7):e152571. doi: 10.1172/JCI152571.

Alterations of a serum marker of collagen X in growing children with osteogenesis imperfecta. Nicol LE, Coghlan RF, Cuthbertson D, Nagamani SCS, Lee B, Olney RC, Horton W; Members of the Brittle Bone Disease Consortium, Orwoll E. Bone. 2021 Aug;149:115990. doi: 10.1016/j.bone.2021.115990. Epub 2021 Apr 28.

Osteogenesis imperfecta is a genetic disorder characterized by bone fragility, abnormal bone growth, and short stature. In this study, researchers sought to better understand the mechanisms by which abnormalities in collagen contribute to growth plate dysfunction. Growth plates are the areas of new bone growth in children and teens, which are made up of cartilage. Researchers examined the presence of Type X collagen (CXM), which has been found to be a reliable marker for new bone formation in cartilage, in blood samples of 187 subjects ages 8 months to 40 years with OI compared with control subjects. All subjects had higher levels of CXM early in life and during puberty, but there was greater variability for the OI cohort and a weaker relationship with growth velocity. The ratio of CXM level to growth velocity was elevated in children with type III/IV OI compared to controls. Results suggest that the relationship between growth plate and the end point of skeletal growth is disrupted in OI. 

COPB2 loss of function causes a coatopathy with osteoporosis and developmental delay. Marom R, Burrage LC, Venditti R, Clément A, Blanco-Sánchez B, Jain M, Scott DA, Rosenfeld JA, Sutton VR, Shinawi M, Mirzaa G, DeVile C, Roberts R, Calder AD, Allgrove J, Grafe I, Lanza DG, Li X, Joeng KS, Lee YC, Song IW, Sliepka JM, Batkovskyte D, Washington M, Dawson BC, Jin Z, Jiang MM, Chen S, Chen Y, Tran AA, Emrick LT, Murdock DR, Hanchard NA, Zapata GE, Mehta NR, Weis MA, Scott AA, Tremp BA, Phillips JB, Wegner J, Taylor-Miller T, Gibbs RA, Muzny DM, Jhangiani SN, Hicks J, Stottmann RW, Dickinson ME, Seavitt JR, Heaney JD, Eyre DR; Undiagnosed Diseases Network, Westerfield M, De Matteis MA, Lee B. Am J Hum Genet. 2021 Sep 2;108(9):1710-1724. doi: 10.1016/j.ajhg.2021.08.002. Epub 2021 Aug 26.

Vesicle coat proteins help cells sort and transport or “traffic” proteins and lipids. Pathogenic variants (mutations) in genes that encode subunits of coat complexes called coatomers are believed to contribute to a number of genetic disorders called coatopathies that can affect the skeletal and central nervous systems. In this study, researchers examined loss-of-function variants in the gene COPB2, which encodes for a protein in the coatomer complex, in six individuals from five unrelated families who have osteoporosis or osteopenia (brittle bones that may fracture easily) and variable degree of developmental delay. Researchers also used zebrafish and mouse models to further study the effect of COPB2 deficiency on collagen trafficking because of the critical role of collagen secretion in bone development. The authors conclude that COPB2 haploinsufficiency (meaning only 50% of the normal active form of a particular protein is expressed) is a cause of this form of coatopathy. They also tested ascorbic acid supplementation as a potential treatment and found that it had a beneficial effect on animal models.

Health-related quality of life in adults with osteogenesis imperfecta. Murali CN, Slater B, Musaad S, Cuthbertson D, Nguyen D, Turner A, Azamian M, Tosi L, Rauch F, Sutton VR, Lee B; Members of the BBD Consortium, Nagamani SCS. Clin Genet. 2021 Jun;99(6):772-779. doi: 10.1111/cge.13939. Epub 2021 Feb 22.

Missing and unerupted teeth in osteogenesis imperfecta. Taqi D, Moussa H, Schwinghamer T, Vieira AR, Dagdeviren D, Retrouvey JM, Rauch F, Tamimi F; Members of the BBDC. Bone. 2021 Sep;150:116011. doi: 10.1016/j.bone.2021.116011. Epub 2021 May 18.

Osteogenesis imperfecta (OI) is a genetic disorder characterized by bone fragility and craniofacial and dental abnormalities. It is believed that OI patients have missing or unerupted teeth at a rate twice the general population. To better understand the factors influencing missing and unerupted teeth, researchers studied 144 OI patients. They examined clinical phenotype (OI type), the genetic variant type, the tooth type and the onset of biophosphonate treatment, which slows bone loss. They found that the presence of missing and unerupted teeth varied according to the nature of the collagen variants and OI type. These findings highlight the role of collagen in tooth development and eruption.

Osteogenesis imperfecta tooth level phenotype analysis: Cross-sectional study. Taqi D, Moussa H, Schwinghamer T, Ducret M, Dagdeviren D, Retrouvey JM, Rauch F, Tamimi F; Members of the BBDC. Bone. 2021 Jun;147:115917. doi: 10.1016/j.bone.2021.115917. Epub 2021 Mar 16.

Pregnancy in women with osteogenesis imperfecta: pregnancy characteristics, maternal, and neonatal outcomes. Rao R, Cuthbertson D, Nagamani SCS, Sutton VR, Lee BH, Krischer J, Krakow D. Am J Obstet Gynecol MFM. 2021 Jul;3(4):100362. doi: 10.1016/j.ajogmf.2021.100362. Epub 2021 Mar 26.

Women with rare diseases considering pregnancy often lack data regarding outcomes, specific risks, and management strategies. The Brittle Bone Disorders Consortium established an Osteogenesis Imperfecta Pregnancy Registry to collect data on pregnancy, maternal, and neonatal outcomes in women with osteogenesis imperfecta (OI), or brittle bone disease. A total of 132 participants with OI completed a cross-sectional, survey-based study. Of respondents, 34% had moderate to severe OI. Researchers compared self-reported information on pregnancy and maternal and neonatal outcomes of women with OI with data on the general population, referenced by literature-based standards. Results indicated that women with OI had higher rates than the general population of diabetes in pregnancy, cesarean delivery, need for blood transfusion, and fractures before or after delivery. Individuals with moderate or severe OI reported higher maternal hospitalization and delivery rates than those with mild OI. Babies born to women with OI had higher rates of neonatal intensive care unit admissions and higher neonatal mortality, regardless of neonatal OI status. Study authors say that patients and providers should be aware of these findings, particularly the need for blood products (hemorrhage) and the increased rate of fractures, low birthweight infants, and neonatal mortality. They suggest that survey results can support both preconception counseling and proactive measures to reduce harm and recognize modifiable risk factors related to pregnancy.

A Multicenter Study of Intramedullary Rodding in Osteogenesis Imperfecta. Rodriguez Celin M, Kruger KM, Caudill A, Nagamani SCS; Brittle Bone Disorders Consortium (BBDC); Linked Clinical Research Centers (LCRC), Harris GF, Smith PA. JB JS Open Access. 2020 Sep 11;5(3):e20.00031. doi: 10.2106/JBJS.OA.20.00031. eCollection 2020 Jul-Sep.

Assessment of longitudinal bone growth in osteogenesis imperfecta using metacarpophalangeal pattern profiles. Rauch D, Robinson ME, Seiltgens C, Sutton VR, Lee B, Glorieux F, Rauch F. Bone. 2020 Nov;140:115547. doi: 10.1016/j.bone.2020.115547. Epub 2020 Jul 27.

Hearing loss in individuals with osteogenesis imperfecta in North America: Results from a multicenter study. Machol K, Hadley TD, Schmidt J, Cuthbertson D, Traboulsi H, Silva RC, Citron C, Khan S, Citron K, Carter E, Brookler K, Shapiro JR, Steiner RD, Byers PH, Glorieux FH, Durigova M, Smith P, Bober MB, Sutton VR, Lee BH; Members of the BBD Consortium, Nagamani SCS, Raggio C. Am J Med Genet A. 2020 Apr;182(4):697-704. doi: 10.1002/ajmg.a.61464. Epub 2019 Dec 26.

Malocclusion traits and oral health-related quality of life in children with osteogenesis imperfecta: A cross-sectional study. Najirad M, Madathil SA, Rauch F, Sutton VR, Lee B, Retrouvey JM; Members of the Brittle Bone Diseases Consortium, Esfandiari S. J Am Dent Assoc. 2020 Jul;151(7):480-490.e2. doi: 10.1016/j.adaj.2020.03.040.

Pediatric Outcomes Data Collection Instrument is a Useful Patient-Reported Outcome Measure for Physical Function in Children with Osteogenesis Imperfecta. Murali CN, Cuthbertson D, Slater B, Nguyen D, Turner A, Harris G, Sutton VR, Lee B; Members of the BBD Consortium, Nagamani SCS. Genet Med. 2020 Mar;22(3):581-589. doi: 10.1038/s41436-019-0688-6. Epub 2019 Nov 27.

A Multicenter Observational Cohort Study to Evaluate the Effects of Bisphosphonate Exposure on Bone Mineral Density and Other Health Outcomes in Osteogenesis Imperfecta. Bains JS, Carter EM, Citron KP, Boskey AL, Shapiro JR, Steiner RD, Smith PA, Bober MB, Hart T, Cuthbertson D, Krischer J, Byers PH, Pepin M, Durigova M, Glorieux FH, Rauch F, Sliepka JM, Sutton VR, Lee B; Members of the BBD Consortium, Nagamani SC, Raggio CL. JBMR Plus. 2019 Jan 7;3(5):e10118. doi: 10.1002/jbm4.10118. eCollection 2019 May.

Assessing Disease Experience across the Life Span for Individuals with Osteogenesis Imperfecta: Challenges and Opportunities for Patient-Reported Outcomes (PROs) Measurement. Tosi LL, Floor MK, Dollar CM, Gillies AP; Members of the Brittle Bone Disease Consortium, Hart TS, Cuthbertson DD, Sutton VR, Krischer JP. Orphanet J Rare Dis. 2019 Jan 29;14(1):23. doi: 10.1186/s13023-019-1004-x. PMID: 30696467; PMCID: PMC6350324.

Caries Prevalence and Experience in Individuals with Osteogenesis Imperfecta. Ma MS, Najirad M, Taqi D, Retrouvey JM, Tamimi F, Dagdeviren D, Glorieux FH, Lee B, Sutton VR, Rauch F, Esfandiari S. Spec Care Dentist. 2019 Mar;39(2):214-219. Epub 2019 Feb 13. https://doi.org/10.1101/418806. PMID: 30758072.

Dental and craniofacial characteristics caused by the p.Ser40Leu mutation in IFITM5. Dagdeviren D, Tamimi F, Lee B, Sutton R, Rauch F, Retrouvey JM. Dental and craniofacial characteristics caused by the p.Ser40Leu mutation in IFITM5. Dagdeviren D, Tamimi F, Lee B, Sutton V, Rauch F, Retrouvey JM. Am J Med Genet A. 2018 Oct 5. doi: 10.1002/ajmg.a.40383. PMID: 30289614.

Growth characteristics in individuals with osteogenesis imperfecta in North America: results from a multicenter study. Jain M, Tam A, Shapiro JR, Steiner RD, Smith PA, Bober MB, Hart T, Cuthbertson D, Krischer J, Mullins M, Bellur S, Byers PH, Pepin M, Durigova M, Glorieux FH, Rauch F, Lee B, Sutton VR; , Members of the Brittle Bone Disorders Consortium*, Nagamani SCS. Genet Med. 2018 Jul 4. doi: 10.1038/s41436-018-0045-1. PMID: 29970925.

Identification of Functionally Distinct Mx1+αSMA+ Periosteal Skeletal Stem Cells. Ortinau LC, Wang H, Lei K, Deveza L, Jeong Y, Hara Y, Grafe I, Rosenfeld SB, Lee D, Lee B, Scadden DT, Park D. Cell Stem Cell. 2019 Dec 5;25(6):784-796.e5. doi: 10.1016/j.stem.2019.11.003.

Incorporating the patient perspective in the study of rare bone disease: insights from the osteogenesis imperfecta community. Swezey T, Reeve BB, Hart TS, Floor MK, Dollar CM, Gillies AP, Tosi LL. Osteoporos Int. 2019 Feb;30(2):507-511. doi: 10.1007/s00198-018-4690-7. Epub 2018 Sep 6. PMID:30191258.

Mobility in Osteogenesis Imperfecta: A Multicenter North American Study. Kruger KM, Caudill A, Rodriguez Celin M, Nagamani SCS, Shapiro JR, Steiner RD, Bober MB, Hart T, Cuthbertson D, Krischer J, Byers PH, Durigova M, Glorieux FH, Rauch F, Sutton VR, Lee B, Rush ET, Smith PA, Harris GF. Genet Med. 2019 Mar 28. doi: 10.1038/s41436-019-0491-4. PMID: 30918359.

Oro-dental and cranio-facial characteristics of osteogenesis imperfecta type V. Retrouvey JM, Taqi D, Tamimi F, Dagdeviren D, Glorieux FH, Lee B, Hazboun R, Krakow D, Sutton VR; Members of the BBD Consortium. Eur J Med Genet. 2019 Dec;62(12):103606. doi: 10.1016/j.ejmg.2018.12.011. Epub 2018 Dec 26.

Osteogenesis imperfecta: advancements in genetics and treatment. Rossi V, Lee B, Marom R. Curr Opin Pediatr. 2019 Dec;31(6):708-715. doi: 10.1097/MOP.0000000000000813.

A Multicenter Study to Evaluate Pulmonary Function in Osteogenesis Imperfecta. Tam A, Chen S, Schauer E, Grafe I, Bandi V, Shapiro JR, Steiner RD, Smith PA, Bober MB, Hart T, Cuthbertson D, Krischer J, Mullins M, Byers PH, Sandhaus RA, Durigova M, Glorieux FH, Rauch F, Reid Sutton V, Lee B; Members of the Brittle Bone Disorders Consortium, Rush ET, Nagamani SCS. Clin Genet. 2018 Dec;94(6):502-511. doi: 10.1111/cge.13440. Epub 2018 Sep 24. PMID: 30152014.

Cone‐Beam Computed Tomography of Osteogenesis Imperfecta Types III and IV: Three‐Dimensional Evaluation of Craniofacial Features and Upper Airways. Reznikov N, Dagdeviren D, Tamimi F, Glorieux F, Rauch F, Retrouvey JM. JBMR Plus. 2019 Feb 7;3(6):e10124. doi: 10.1002/jbm4.10124. PMID: 31346560; PMCID: PMC6636768.

Heterozygous WNT1 variant causing a variable bone phenotype. Alhamdi S, Lee YC, Chowdhury S, Byers PH, Gottschalk M, Taft RJ, Joeng KS, Lee BH, Bird LM. Am J Med Genet A. 2018 Nov;176(11):2419-2424. doi: 10.1002/ajmg.a.40347. Epub 2018 Sep 24.

Oral Health-Related Quality of Life in Children and Adolescents with Osteogenesis Imperfecta: cross- sectional study. Najirad M, Ma MS, Rauch F, Sutton VR, Lee B, Retrouvey JM; Members of the BBD, Esfandiari S. Orphanet J Rare Dis. 2018 Oct 25;13(1):187. doi: https://doi.org/10.1101/424812. PMID: 30359278.

Osteogenesis imperfecta: potential therapeutic approaches. Rousseau M, Retrouvey JM; Members of the Brittle Bone Disease Consortium. PeerJ. 2018 Aug 17;6:e5464. doi: 10.7717/peerj.5464. eCollection 2018. PMID: 30128210.

Correlations Between Bone Mechanical Properties and Bone Composition Parameters in Mouse Models of Dominant and Recessive Osteogenesis Imperfecta and the Response to Anti-TGF-β Treatment. Bi X, Grafe I, Ding H, Flores R, Munivez E, Jiang MM, Dawson B, Lee B, Ambrose CG. J Bone Miner Res. 2017 Feb;32(2):347-359. doi: 10.1002/jbmr.2997. Epub 2016 Oct 20.

Fkbp10 Deletion in Osteoblasts Leads to Qualitative Defects in Bone. Lietman CD, Lim J, Grafe I, Chen Y, Ding H, Bi X, Ambrose CG, Fratzl-Zelman N, Roschger P, Klaushofer K, Wagermaier W, Schmidt I, Fratzl P, Rai J, Weis M, Eyre D, Keene DR, Krakow D, Lee BH. J Bone Miner Res. 2017 Jun;32(6):1354-1367. doi: 10.1002/jbmr.3108. Epub 2017 Mar 20.

Genetic causes and mechanisms of Osteogenesis Imperfecta. Lim J, Grafe I, Alexander S, Lee B. Bone. 2017 Sep;102:40-49. doi: 10.1016/j.bone.2017.02.004. Epub 2017 Feb 15.

Orthodontic chart documentation. Abdelkarim A, Jerrold L. Am J Orthod Dentofacial Orthop. 2017 Jul;152(1):126-130. doi: 10.1016/j.ajodo.2017.03.018.

Cesarean delivery is not associated with decreased at-birth fracture rates in osteogenesis imperfecta. Bellur S, Jain M, Cuthbertson D, Krakow D, Shapiro JR, Steiner RD, Smith PA, Bober MB, Hart T, Krischer J, Mullins M, Byers PH, Pepin M, Durigova M, Glorieux FH, Rauch F, Sutton VR, Lee B; Members of the BBD Consortium, Nagamani SC. Genet Med. 2016 Jun;18(6):570-6. doi: 10.1038/gim.2015.131. Epub 2015 Oct 1. PMID: 26426884.

Sclerostin Antibody Treatment Improves the Bone Phenotype of Crtap(-/-) Mice, a Model of Recessive Osteogenesis Imperfecta. Grafe I, Alexander S, Yang T, Lietman C, Homan EP, Munivez E, Chen Y, Jiang MM, Bertin T, Dawson B, Asuncion F, Ke HZ, Ominsky MS, Lee B. J Bone Miner Res. 2016 May;31(5):1030-40. doi: 10.1002/jbmr.2776. Epub 2016 Feb 12.

A transgenic mouse model of OI type V supports a neomorphic mechanism of the IFITM5 mutation. Lietman CD, Marom R, Munivez E, Bertin TK, Jiang MM, Chen Y, Dawson B, Weis MA, Eyre D, Lee B. J Bone Miner Res. 2015 Mar;30(3):489-98. doi: 10.1002/jbmr.2363.

Peripheral Immune Profiles Predict ALS Progression in an Age- and Sex-Dependent Manner. Piecuch CE, Webber-Davis IF, Teener SJ, Feldman EL, Zhao L, Goutman SA. Neurol Neuroimmunol Neuroinflamm. 2024 May;11(3):e200241. doi: 10.1212/NXI.0000000000200241. Epub 2024 Apr 16. PMID: 38626361; PMCID: PMC11087030.

The Miami Framework for ALS and related neurodegenerative disorders: an integrated view of phenotype and biology. Benatar M, Wuu J, Huey ED, McMillan CT, Petersen RC, Postuma R, McHutchison C, Dratch L, Arias JJ, Crawley A, Houlden H, McDermott MP, Cai X, Thakur N, Boxer A, Rosen H, Boeve BF, Dacks P, Cosentino S, Abrahams S, Shneider N, Lingor P, Shefner J, Andersen PM, Al-Chalabi A, Turner MR; Attendees of the Second International Pre-Symptomatic ALS Workshop. Nat Rev Neurol. 2024 Jun;20(6):364-376. doi: 10.1038/s41582-024-00961-z. Epub 2024 May 20.

An Empirical Comparison of Commonly Used Universal Rating Scales for Dystonia. Boz D, Kilic-Berkmen G, Perlmutter JS, Norris SA, Wright LJ, Klein C, Bäumer T, Löns S, Feuerstein JS, Mahajan A, Wagle-Shukla A, Malaty I, LeDoux MS, Ondo W, Pantelyat A, Frank S, Saunders-Pullman R, Jinnah HA. Mov Disord Clin Pract. 2023 Nov 12;10(12):1777-1786. doi: 10.1002/mdc3.13909. eCollection 2023 Dec.

Analysis of Structural Variants Previously Associated With ALS in Europeans Highlights Genomic Architectural Differences in Africans. Monnakgotla NR, Mahungu AC, Heckmann JM, Botha G, Mulder NJ, Wu G, Rampersaud E, Myers J, Van Blitterswijk M, Rademakers R, Taylor JP, Wuu J, Benatar M, Nel M. Neurol Genet. 2023 Jun 16;9(4):e200077. doi: 10.1212/NXG.0000000000200077. eCollection 2023 Aug.

Cerebellar Volume and Disease Staging in Parkinson's Disease: An ENIGMA-PD Study. Kerestes R, Laansma MA, Owens-Walton C, Perry A, van Heese EM, Al-Bachari S, Anderson TJ, Assogna F, Aventurato ÍK, van Balkom TD, Berendse HW, van den Berg KRE, Betts R, Brioschi R, Carr J, Cendes F, Clark LR, Dalrymple-Alford JC, Dirkx MF, Druzgal J, Durrant H, Emsley HCA, Garraux G, Haroon HA, Helmich RC, van den Heuvel OA, João RB, Johansson ME, Khachatryan SG, Lochner C, McMillan CT, Melzer TR, Mosley PE, Newman B, Opriessnig P, Parkes LM, Pellicano C, Piras F, Pitcher TL, Poston KL, Rango M, Roos A, Rummel C, Schmidt R, Schwingenschuh P, Silva LS, Smith V, Squarcina L, Stein DJ, Tavadyan Z, Tsai CC, Vecchio D, Vriend C, Wang JJ, Wiest R, Yasuda CL, Young CB, Jahanshad N, Thompson PM, van der Werf YD, Harding IH; ENIGMA-Parkinson's Study. Mov Disord. 2023 Dec;38(12):2269-2281. doi: 10.1002/mds.29611. Epub 2023 Nov 14.

Racial Differences in Clinical Presentation in Individuals Diagnosed With Frontotemporal Dementia. Jin HA, McMillan CT, Yannatos I, Fisher L, Rhodes E, Jacoby SF, Irwin DJ, Massimo L. JAMA Neurol. 2023 Sep 11:e233093. doi: 10.1001/jamaneurol.2023.3093. Online ahead of print.

Temporal course of cognitive and behavioural changes in motor neuron diseases. McHutchison CA, Wuu J, McMillan CT, Rademakers R, Statland J, Wu G, Rampersaud E, Myers J, Hernandez JP, Abrahams S, Benatar M; CReATe Consortium. J Neurol Neurosurg Psychiatry. 2023 Oct 12:jnnp-2023-331697. doi: 10.1136/jnnp-2023-331697.

While people with motor neuron disease (MND) experience cognitive and behavioral dysfunction, the onset and progression of these symptoms, relative to motor manifestations, remains unclear. In this study, CReATe Consortium researchers explored changes in these deficits over time, and whether demographic, clinical, or genetic factors affected these symptoms.

A total of 237 participants were recruited through the consortium’s Phenotype-Genotype-Biomarker study. The Edinburgh Cognitive and Behavioural Amyotrophic Lateral Sclerosis Screen was administered every three to six months to assess ALS-specific cognitive issues, such as executive function, verbal fluency, and language; and ALS non-specific memory and visuospatial functions. Behavioral symptoms like apathy, disinhibition, loss of sympathy and perseveration and hyperorality, were reported through semi-structured interviews.

In this large observational study, cognitive impairment at initial assessment was infrequent, but when present, most often involved language and executive functions. These impairments were associated with lower educational levels, but not with the C9ORF72 repeat expansion. We also found that cognition remained stable over time for most patients. However, a small subset showed decline on all cognitive domains, which was not entirely explained by the presence of a C9ORF72 repeat expansion. Behavioral symptoms in these MND participants were uncommon.

Our findings raise questions about the timing of cognitive impairment in MND, and whether it arises during early clinically manifest disease or even prior to motor manifestations. This highlights the need for future research to identify when these cognitive symptoms begin and what other factors are associated with decline over time.

The amyotrophic lateral sclerosis-health index (ALS-HI): development and evaluation of a novel outcome measure. Varma A, Weinstein J, Seabury J, Rosero S, Zizzi C, Alexandrou D, Wagner E, Dilek N, Heatwole J, Wuu J, Caress J, Bedlack R, Granit V, Statland J, Mehta P, Benatar M, Kaat A, Heatwole C. Amyotroph Lateral Scler Frontotemporal Degener. 2023 Aug;24(5-6):514-522. doi: 10.1080/21678421.2023.2204871. Epub 2023 May 15. PMID: 37190795

Amyotrophic lateral sclerosis (ALS) patients experience a wide variety of physical, mental, emotional, and social symptoms of the disease. Tools to track a patient’s subtle but important changes over time are important for managing the disease burden as well as assessing promising new therapeutic agents. Therefore, highly reliable, sensitive, and valid disease-specific outcome measures for ALS are vital for clinicians and researchers, as well as patients and family members.

In this study, the authors report the development of the Amyotrophic Lateral Sclerosis-Health Index (ALS-HI), which was created and validated in accordance with FDA guidance. This is a multifactorial, disease-specific patient-reported outcome measure capable of measuring meaningful changes in how an ALS patient feels and functions.

To develop the ALS-HI, the authors surveyed a national cross section of 497 individuals with ALS. After identifying the most important symptoms of ALS, they performed factor analysis, qualitative patient interviews, test-retest reliability assessment, and known groups analysis to evaluate and validate the ALS-HI. Fifteen participants took part in a beta test and found the ALS-HI to be clear, easy to use, and relevant. 

The study supports use of the ALS-HI as a valid, sensitive, and reliable instrument to assess the disease burden of individual patients with ALS. The ALS-HI could also serve as an effective mechanism to track disease progression and treatment efficacy during therapeutic trials.

The mutational profile in a South African cohort with inherited neuropathies and spastic paraplegia. Mahungu AC, Steyn E, Floudiotis N, Wilson LA, Vandrovcova J, Reilly MM, Record CJ, Benatar M, Wu G, Raga S, Wilmshurst JM, Naidu K, Hanna M, Nel M, Heckmann JM. Front Neurol. 2023 Aug 29;14:1239725. doi: 10.3389/fneur.2023.1239725. eCollection 2023.

A rare variant analysis framework using public genotype summary counts to prioritize disease-predisposition genes. Chen W, Wang S, Tithi SS, Ellison DW, Schaid DJ, Wu G. Nat Commun. 2022 May 11;13(1):2592. doi: 10.1038/s41467-022-30248-0.

Adaptation and norming of the Edinburgh Cognitive and behavioural amyotrophic lateral sclerosis screen (ECAS) for three language groups in South Africa. Albertyn CH, Hardy A, Bakker LA, Hlangani M, Van Der Walt K, Zeilinga B, Thomas KGF, Heckmann JM. Amyotroph Lateral Scler Frontotemporal Degener. 2022 Nov;23(7-8):532-541. doi: 10.1080/21678421.2022.2030361. Epub 2022 Feb 4.

Characteristics of serum neurofilament light chain as a biomarker in hereditary spastic paraplegia type 4. Kessler C, Serna-Higuita LM, Wilke C, Rattay TW, Hengel H, Reichbauer J, Stransky E, Leyva-Gutiérrez A, Mengel D, Synofzik M, Schöls L, Martus P, Schüle R. Ann Clin Transl Neurol. 2022 Mar;9(3):326-338. doi: 10.1002/acn3.51518. Epub 2022 Feb 16. PMID: 35171517; PMCID: PMC8935322.

Hereditary spastic paraplegia (HSP) is a group of inherited neurological disorders characterized by muscle weakness and tightness (spasticity) in the legs. Easily accessible fluid biomarkers are lacking in spastic paraplegia type 4 (SPG4), the most prevalent form of HSP. In this study, researchers investigated serum neurofilament light chain (sNfL) as a potential therapy response, diagnostic, monitoring, and prognostic biomarker in SPG4. The team assessed sNfL levels in 93 patients with SPG4 and 60 healthy controls. They found that sNfL levels are not suitable to monitor disease progression in SPG4, but may be valuable as a therapy response biomarker. Authors note that because sNfL levels appear to be most dynamic around the onset of SPG4, the ability to detect a therapy response is especially promising in younger patients, matching the need to initiate treatment in early disease stages.

Defining cognitive impairment in amyotrophic lateral sclerosis: an evaluation of empirical approaches. McMillan CT, Wuu J, Rascovsky K, Cosentino S, Grossman M, Elman L, Quinn C, Rosario L, Stark JH, Granit V, Briemberg H, Chenji S, Dionne A, Genge A, Johnston W, Korngut L, Shoesmith C, Zinman L; Canadian ALS Neuroimaging Consortium (CALSNIC), Kalra S, Benatar M. Amyotroph Lateral Scler Frontotemporal Degener. 2022 Mar 7:1-10. doi: 10.1080/21678421.2022.2039713. Online ahead of print.

Mild motor impairment as prodromal state in amyotrophic lateral sclerosis: a new diagnostic entity. Benatar M, Granit V, Andersen PM, Grignon AL, McHutchison C, Cosentino S, Malaspina A, Wuu J. Brain. 2022 May 20:awac185. doi: 10.1093/brain/awac185. Epub ahead of print. PMID: 35594156.

Amyotrophic lateral sclerosis (ALS) is traditionally regarded as a clinical syndrome. Emerging biomarker evidence of disease prior to clinical manifestations of disease, however, have fostered the view that ALS should be considered a biological entity with pre-symptomatic and clinically manifest stages of disease. New data from Pre-fALS, a natural history and biomarker study of people at genetic risk for ALS, now indicate that pre-symptomatic should not necessarily be taken to mean “clinically silent.” Systematic clinical characterization of 20 phenoconverters–pre-symptomatic gene mutation carriers who have been followed from the pre-symptomatic to the clinically manifest stages of disease–reveals evidence of a prodromal state of mild motor impairment (MMI). MMI is characterized by symptoms, signs, or electromyographic findings that represent a departure from normal, but which are insufficiently severe or widespread to clearly indicate ALS. The duration of prodromal MMI varies among carriers of different genetic mutations. Based on these findings, the authors conclude that in three of the most common genetic forms of ALS, MMI is an observable state that is prodromal to clinically manifest disease. The authors hypothesize that this may also be true for all genetic ALS and non-genetic forms of ALS as well. Importantly, MMI is considered both an intermediate (transitional) and an indeterminate state, as not everyone with MMI will progress to develop ALS. As a new diagnostic label, MMI should generate fresh urgency for developing diagnostic biomarkers that might permit earlier therapeutic intervention.

Neurofilament Light Chain and Glial Fibrillary Acidic Protein as Biomarkers in Primary Progressive Multiple Sclerosis and Hereditary Spastic Paraplegia Type 4. Kessler C, Ruschil C, Abdelhak A, Wilke C, Maleska A, Kuhle J, Krumbholz M, Kowarik MC, Schüle R. Serum. Int J Mol Sci. 2022 Nov 3;23(21):13466. doi: 10.3390/ijms232113466. PMID: 36362248; PMCID: PMC9657281.

Primary progressive multiple sclerosis (PPMS) and hereditary spastic paraplegia (HSP) are inherited disorders affecting nerves that send messages to the muscles. Because patients with both disorders can present with slowly progressive spastic paraparesis (weakness in the legs), accurate diagnoses are often challenging. In this study, researchers investigated the use of serum neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) as biomarkers to support diagnosis. The team assessed sNfl and sGFAP levels in 25 patients with PPMS, 25 patients with spastic paraplegia type 4 (SPG4, the most common type of HSP), and 60 control subjects. Results showed that sNfl levels were significantly higher in patients with PPMS compared to patients with SPG4. Researchers also observed a trend toward relatively higher sGFAP levels in patients with PPMS. However, because both groups of patients showed overlapping biomarker values, the team did not find sNfL and sGFAP to be useful biomarkers. As findings indicate that sNfL and sGFAP are most significantly elevated in the early disease stages of PPMS, authors note that further investigation is warranted.

Neurofilament light chain in drug development for amyotrophic lateral sclerosis: a critical appraisal. Benatar M, Wuu J, Turner MR. Brain. 2022 Oct 31:awac394. doi: 10.1093/brain/awac394. Epub ahead of print. PMID: 36310538.

Interest in amyotrophic lateral sclerosis (ALS) biomarkers has grown exponentially over the course of the last 25 years, with great hope that they might serve as tools to facilitate the development of meaningful therapies for this otherwise progressive and fatal disease. Effective use of biomarkers, however, requires an understanding of what it means for them to be “fit-for-purpose,” as well as an appreciation of the nuances of the clinical contexts in which they will be applied. Neurofilament light chain (NfL) has emerged as a leading candidate with enormous potential to aid ALS therapy development. However, Nfl is also profoundly misunderstood. Within the conceptual framework of the BEST (Biomarkers, EndpointS, and other Tools) Resource developed by the National Institutes of Health and the Food & Drug Administration in the United States, authors consider the evidence supporting the use of NfL for a variety of purposes in different clinical contexts. Authors conclude that NfL may serve as a susceptibility/risk biomarker in populations at elevated risk for ALS, and that NfL has value as a prognostic biomarker when measured early in the course of established disease. Authors also conclude that NfL may serve as a pharmacodynamic biomarker, as a reduction in NfL in response to an experimental therapeutic might aid go/no-go decisions in phase 2 clinical trials. A reduction in NfL may also be a reasonably likely surrogate endpoint for experimental therapeutics administered early in the course of disease.

Occupational lead exposure and survival with amyotrophic lateral sclerosis. Wang TW, Wuu J, Cooley A, Yeh TS, Benatar M, Weisskopf M. Amyotroph Lateral Scler Frontotemporal Degener. 2022 Apr 9;1-8. doi: 10.1080/21678421.2022.2059379. Online ahead of print.

Environmental risk factors are thought to play a role in ALS risk but may also impact the rate of disease progression and survival. Lead, given its known neurotoxicity, is one such exposure. Prior studies that have relied on biomarkers of lead exposure have yielded conflicting results. In this study, researchers evaluated the relationship between occupational lead exposure prior to onset of ALS on the one hand, and disease progression and survival following onset of ALS on the other hand. Lead exposure was determined using a job-exposure matrix based on occupations held prior to onset of ALS. This approach avoids the potential for reverse causation bias that may result from reliance on lead biomarkers after disease onset. The impact on disease progression was quantified through both survival analysis and estimation of the rate of functional decline. Results suggest that lead exposure before onset of ALS is associated with more rapid functional decline and shorter survival following onset of ALS, even after adjusting for other factors known to influence disease progression.

Patient reported impact of symptoms in amyotrophic lateral sclerosis (PRISM-ALS): A national, cross-sectional study. Zizzi C, Seabury J, Rosero S, Alexandrou D, Wagner E, Weinstein JS, Varma A, Dilek N, Heatwole J, Wuu J, Caress J, Bedlack R, Granit V, Statland JM, Mehta P, Benatar M, Heatwole C. EClinicalMedicine. 2022 Dec 13;55:101768. doi: 10.1016/j.eclinm.2022.101768. PMID: 36531982; PMCID: PMC9755057.

Preventing amyotrophic lateral sclerosis: insights from pre-symptomatic neurodegenerative diseases. Benatar M, Wuu J, McHutchison C, Postuma RB, Boeve BF, Petersen R, Ross CA, Rosen H, Arias JJ, Fradette S, McDermott MP, Shefner J, Stanislaw C, Abrahams S, Cosentino S, Andersen PM, Finkel RS, Granit V, Grignon AL, Rohrer JD, McMillan CT, Grossman M, Al-Chalabi A, Turner MR; First International Pre-Symptomatic ALS Workshop. Brain. 2022 Mar 29;145(1):27-44. doi: 10.1093/brain/awab404. PMID: 34677606; PMCID: PMC8967095.

Significant progress has been made in understanding the pre-symptomatic phase of amyotrophic lateral sclerosis (ALS). Much is still unknown, however, and advances in other neurodegenerative diseases—including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), spinal muscular atrophy (SMA), and frontotemporal dementia (FTD)—highlight opportunities for discovery in ALS. This article builds on discussions at the First International Pre-Symptomatic ALS Workshop (January 2020, Miami, Florida). Lessons from AD illustrate the importance of conceptualizing neurodegenerative diseases as biological entities. PD and HD, respectively, highlight the value of prodromal clinical markers and the value of tools to predict age of onset. FTD elucidates nuanced differences in pre-symptomatic disease based on genotype, and SMA underscores the value of early therapeutic intervention. The authors discuss a conceptual framework for pre-symptomatic ALS that includes clinically silent and prodromal stages of disease. They also provide recommendations for the study of motor, cognitive, and behavioral manifestations of early ALS; emphasize the critical importance of biomarkers; discuss the challenges of genetic and biomarker counseling as well as a range of ethical, legal, and social issues relevant to pre-symptomatic disease. Last, but not least, they present ideas about the design of early intervention and disease prevention clinical trials. Ultimately, the authors present a road map to early intervention—and perhaps even disease prevention—for all forms of ALS.

Rates of longitudinal change in (18) F-flortaucipir PET vary by brain region, cognitive impairment, and age in atypical Alzheimer's disease. Phillips JS, Nitchie FJ 4th, Da Re F, Olm CA, Cook PA, McMillan CT, Irwin DJ, Gee JC, Dubroff JG, Grossman M, Nasrallah IM; Alzheimer's Disease Neuroimaging Initiative. Alzheimers Dement. 2022 Jun;18(6):1235-1247. doi: 10.1002/alz.12456. Epub 2021 Sep 13.

Revealing the Mutational Spectrum in Southern Africans with Amyotrophic Lateral Sclerosis. Nel M, Mahungu AC, Monnakgotla N, Botha GR, Mulder NJ, Wu G, Rampersaud E, van Blitterswijk M, Wuu J, Cooley A, Myers J, Rademakers R, Taylor JP, Benatar M, Heckmann JM. Neurol Genet. 2022 Jan 12;8(1):e654. doi: 10.1212/NXG.0000000000000654. PMID: 35047667; PMCID: PMC8756565.

Amyotrophic Lateral Sclerosis Survival Associates With Neutrophils in a Sex-specific Manner. Murdock BJ, Goutman SA, Boss J, Kim S, Feldman EL. Neurol Neuroimmunol Neuroinflamm. 2021 Feb 2;8(2):e953. doi: 10.1212/NXI.0000000000000953. Print 2021 Mar.

Challenges and opportunities for Multi-National Investigator-Initiated clinical trials for ALS: European and United States collaborations. Lingor P, Koch JC, Statland JM, Hussain S, Hennecke C, Wuu J, Langbein T, Ahmed R, Günther R, Ilse B, Kassubek J, Kollewe K, Kuttler J, Leha A, Lengenfeld T, Meyer T, Neuwirth C, Tostmann R, Benatar M. Amyotroph Lateral Scler Frontotemporal Degener. 2021 Aug;22(5-6):419-425. doi: 10.1080/21678421.2021.1879866. Epub 2021 Feb 3.

Epigenetic Small Molecules Rescue Nucleocytoplasmic Transport and DNA Damage Phenotypes in C9ORF72 ALS/FTD. Ramic M, Andrade NS, Rybin MJ, Esanov R, Wahlestedt C, Benatar M, Zeier Z. Brain Sci. 2021 Nov 20;11(11):1543. doi: 10.3390/brainsci11111543.

Epigenetic small moleculars rescue nucleocytoplasmic transport and DNA damage phenotypes in C9ORF72 ALS/FTD. Melina Ramic, Nadja S Andrade, Matthew J Rybin, Rustam Esanov, Claes Wahlestedt, Michael Benatar, Zane Zeier. Brain Sci. 2021 Nov 20;11(11):1543. doi: 10.3390/brainsci11111543. PMID: 34827542.

FGF23, a novel muscle biomarker detected in the early stages of ALS. Si Y, Kazamel M, Benatar M, Wuu J, Kwon Y, Kwan T, Jiang N, Kentrup D, Faul C, Alesce L, King PH. Sci Rep. 2021 Jun 8;11(1):12062. doi: 10.1038/s41598-021-91496-6.

Harnessing the power of the electronic health record for ALS research and quality improvement: CReATe CAPTURE-ALS and the ALS Toolkit. Granit V, Grignon AL, Wuu J, Katz J, Walk D, Hussain S, Hernandez J, Jackson C, Caress J, Yosick T, Smider N, Benatar M. Muscle Nerve. 2022 Feb;65(2):154-161. doi: 10.1002/mus.27454. Epub 2021 Nov 16. PMID: 34730240; PMCID: PMC8752483.

Effective use of electronic health record (EHR) data for research purposes has been a long-standing goal of physicians caring for patients with amyotrophic lateral sclerosis (ALS). Several barriers, however, have impeded progress toward this goal, including the limited quality and completeness of clinical documentation, as well as the burden of duplicative entry of clinical data into a research database. To address these barriers, researchers developed the ALS Toolkit, a set of interactive digital forms integrated into the EHR. Used routinely during clinic visits, the ALS Toolkit enables seamless, structured and consistent collection of data elements relevant to ALS patient care, with the expectation that these will also be suitable for research purposes. Since it incorporates AAN quality measures for the care of ALS patients, the ALS Toolkit may also be used to facilitate quality improvement initiatives. CReATe’s Clinical Procedures to Support Research in ALS (CAPTURE-ALS) study utilizes the ALS Toolkit to facilitate multi-center aggregation of data collected at the point of clinical care, empowering research and driving quality improvement. With the goal of collecting data from all patients receiving care through multidisciplinary clinics, CAPTURE-ALS will yield data that reflects the true diversity of populations affected by ALS, rather than the restricted subset of patients currently participating in dedicated research studies.

Humoral response to neurofilaments and dipeptide repeats in ALS progression. Puentes F, Lombardi V, Lu CH, Yildiz O, Fratta P, Isaacs A, Bobeva Y, Wuu J; ALS Biomarker Consortium; CReATe Consortium, Benatar M, Malaspina A. Ann Clin Transl Neurol. 2021 Sep;8(9):1831-1844. doi: 10.1002/acn3.51428. Epub 2021 Jul 27.

Neurofilaments, both light chain (NfL) and phosphorylated neurofilament heavy (pNfH), are structural components of axons. Both NfL and pNfH are known to increase during the pre-symptomatic and early symptomatic phases of disease and then to reach a stable but elevated plateau despite continued progression of disease. Although these proteins, most notably NfL, have emerged as the most promising prognostic and potential pharmacodynamic biomarkers, it remains unclear why neurofilament levels do not change as disease progresses. The current study focused on the immune response to neurofilaments (and dipeptide repeat proteins in patients with the C9orf72 genetic form of ALS), quantifying levels of antibodies and immune complexes that represent the humeral response to the release of these proteins. The investigators observed a trend towards increasing concentrations of NfL antibodies and immune complexes over the course of longitudinal follow among patients with faster progressing disease, raising the possibility that the immune response is partially responsible for clearing NfL and stabilizing plasma levels of this protein despite increased production as neurodegeneration progresses.

Long-read targeted sequencing ucnovers clinicopathological associations for Cr0rf72-linked diseases. DeJesus-Hernandez M, Aleff RA, Jackson JL, Finch NA, Baker MC, Gendron TF, Murray ME, McLaughlin IJ, Harting JR, Graff-Radford NR, Oskarsson B, Knopman DS, Josephs KA, Boeve BF, Petersen RC, Fryer JD, Petrucelli L, Dickson DW, Rademakers R, Ebbert MTW, Wieben ED, van Blitterswijk M.. Brain. 2021 May 7;144(4):1082-1088. doi: 10.1093/brain/awab006. PMID: 33889947.

Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis. Placek K, Benatar M, Wuu J, Rampersaud E, Hennessy L, Van Deerlin VM, Grossman M, Irwin DJ, Elman L, McCluskey L, Quinn C, Granit V, Statland JM, Burns TM, Ravits J, Swenson A, Katz J, Pioro EP, Jackson C, Caress J, So Y, Maiser S, Walk D, Lee EB, Trojanowski JQ, Cook P, Gee J, Sha J, Naj AC, Rademakers R; CReATe Consortium, Chen W, Wu G, Paul Taylor J, McMillan CT. EMBO Mol Med. 2021 Jan 11;13(1):e12595. doi: 10.15252/emmm.202012595. Epub 2020 Dec 3. PMID: 33270986; PMCID: PMC7799365.

NK cells associate with ALS in a sex- and age-dependent manner. Murdock BJ, Famie JP, Piecuch CE, Raue KD, Mendelson FE, Pieroni CH, Iniguez SD, Zhao L, Goutman SA, Feldman EL. JCI Insight. 2021 Jun 8;6(11):e147129. doi: 10.1172/jci.insight.147129.

Neurofilament light chain is a cerebrospinal fluid biomarker in hereditary spastic paraplegia. Kessler C, Serna-Higuita LM, Rattay TW, Maetzler W, Wurster I, Hayer S, Wilke C, Hengel H, Reichbauer J, Armbruster M, Schöls L, Martus P, Schüle R. Ann Clin Transl Neurol. 2021 May;8(5):1122-1131. doi: 10.1002/acn3.51358. Epub 2021 Apr 5.

Repeats expansions in ATXN2, NOP56, NIPA1 and ATXN1 are not associated with ALS in Africans. Nel M, Mavundla T, Gultig K, Botha G, Mulder N, Benatar M, Wuu J, Cooley A, Myers J, Rampersaud E, Wu G, Heckmann JM. IBRO Neurosci Rep. 2021 Feb 10;10:130-135. doi: 10.1016/j.ibneur.2021.02.002. eCollection 2021 Jun.

Urinary neopterin: A novel biomarker of disease progression in amyotrophic lateral sclerosis. Shepheard SR, Karnaros V, Benyamin B, Schultz DW, Dubowsky M, Wuu J, Chataway T, Malaspina A, Benatar M, Rogers ML. Eur J Neurol. 2021 Dec 29. doi: 10.1111/ene.15237. Epub ahead of print. PMID: 34967083.

Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease that leads to progressive muscle weakness. There are currently no meaningfully effective treatments for ALS, which is invariably fatal. Biomarkers that are suitably fit-for-purpose have great potential to enhance therapy development efforts. A research team led by Dr. Mary Louise-Rogers at Flinders University in Australia has found that urinary neopterin, a marker of an underlying pro-inflammatory state, is elevated in ALS compared to age-matched controls, and progressively increases as the disease advances. In addition to its potential utility as a biomarker of disease progression, neopterin might also have potential as a predictive biomarker, identifying a subset of patients who may stand to benefit from therapeutics that target inflammatory pathways.

Dipeptide repeat proteins inhibit homology-directed DNA double strand break repair in C9ORF72 ALS/FTD. Andrade N, Ramic M, Esanov R, et al. Mol Neurodegener. 2020 Feb 24;15(1):13. doi: 10.1186/s13024-020-00365-9. PMID: 32093728; PMCID: PMC7041170.

Disentangling Heterogeneity in Alzheimer's Disease and Related Dementias Using Data-Driven Methods. Habes M, Grothe MJ, Tunc B, McMillan C, Wolk DA, Davatzikos C. Biol Psychiatry. 2020 Jul 1;88(1):70-82. doi: 10.1016/j.biopsych.2020.01.016. Epub 2020 Jan 31.

Metabolite Profiling Reveals Predictive Biomarkers and the Absence of β-Methyl Amino-l-alanine in Plasma from Individuals Diagnosed with Amyotrophic Lateral Sclerosis. Bereman MS, Kirkwood KI, Sabaretnam T, Furlong S, Rowe DB, Guillemin GJ, Mellinger AL, Muddiman DC. J Proteome Res. 2020 Aug 7;19(8):3276-328. PMID: 32418425.

Temporal evolution of the microbiome, immune system and epigenome with disease progression in ALS mice. Figueroa-Romero C,1, Guo K,2, Murdock BJ, et al. Dis Model Mech. 2020 Feb 1; 13(2). PMCID: PMC6906635, PMID: 31597644.

The potential of neurofilaments analysis using dry-blood and plasma spots. Lombardi V, Carassiti D, Giovannoni G, Lu CH, Adiutori R, Malaspina A. Sci Rep. 2020 Jan 9;10(1):97. PMID: 31919375, PMCID: PMC6952412.

Validation of serum neurofilaments as prognostic and potential pharmacodynamic biomarkers for ALS. Benatar M, Zhang L, Wang L, Granit V, Statland J, Barohn R, Swenson A, Ravits J, Jackson C, Burns TM, Trivedi J, Pioro EP, Caress J, Katz J, McCauley JL, Rademakers R, Malaspina A, Ostrow LW, Wuu J; CReATe Consortium. Neurology. 2020 Jul 7;95(1):e59-e69. PMID: 32385188, PMCID: PMC7371380.

Antisense RNA foci are associated with nucleoli and TDP-43 mislocalization in C9orf72-ALS/FTD: a quantitative study. Aladesuyi Arogundade O, Stauffer JE, Saberi S, Diaz-Garcia S, Malik S, Basilim H, Rodriguez MJ, Ohkubo T, Ravits J. Acta Neuropathol. 2019 Mar;137(3):527-530. doi: 10.1007/s00401-018-01955-0. Epub 2019 Jan 21. PMID: 30666413; PMCID: PMC6397670.

Exome sequencing in amyotrophic lateral sclerosis implicates a novel gene, DNAJC7, encoding a heat-shock protein. Farhan SMK, Howrigan DP, Abbott LE, Klim JR, Topp SD, Byrnes AE, Churchhouse C, Phatnani H, Smith BN, Rampersaud E, Wu G, Wuu J, Shatunov A, Iacoangeli A, Al Khleifat A, Mordes DA, Ghosh S; ALSGENS Consortium; FALS Consortium; Project MinE Consortium; CReATe Consortium, Eggan K, Rademakers R, McCauley JL, Schüle R, Züchner S, Benatar M, Taylor JP, Nalls M, Gotkine M, Shaw PJ, Morrison KE, Al-Chalabi A, Traynor B, Shaw CE, Goldstein DB, Harms MB, Daly MJ, Neale BM. Nat Neurosci. 2019 Dec; 22(12): 1966–1974. PMCID: PMC6919277, PMID: 31768050.

Pediatric Cancer Variant Pathogenicity Information Exchange (PeCanPIE): a cloud-based platform for curating and classifying germline variants. Edmonson MN, Patel AN, Hedges DJ, Wang Z, Rampersaud E, Kesserwan CA, Zhou X, Liu Y, Newman S, Rusch MC, McLeod CL, Wilkinson MR, Rice SV, Soussi T, Taylor JP, Benatar M, Becksfort JB, Nichols KE, Robison LL, Downing JR, Zhang J.. Genome Res. 2019 Sep;29(9):1555-1565. doi: 10.1101/gr.250357.119. Epub 2019 Aug 22. PMID: 31439692.

UNC13A polymorphism contributes to frontotemporal disease in sporadic amyotrophic lateral sclerosis. Placek K, Baer GM, Elman L, McCluskey L, Hennessy L, Ferraro PM, Lee EB, Lee VMY, Trojanowski JQ, Van Deerlin VM, Grossman M, Irwin DJ, McMillan CT. Neurobiol Aging. 2019; 73:190-199. PMID:30368160, PMCID: PMC6251755.

G-quadruplex-binding small molecules ameliorate C9orf72 FTD/ALS pathology in vitro and in vivo. Simone R, Balendra R, Moens TG, et al. EMBO Mol Med. 2018 Jan;10(1):22-31. doi: 10.15252/emmm.201707850. PMID: 29113975; PMCID: PMC5760849.

GDAP2 mutations implicate susceptibility to cellular stress in a new form of cerebellar ataxia. Eidhof I, Baets J, Kamsteeg EJ, Deconinck T, van Ninhuijs L, Martin JJ, Schüle R, Züchner S, De Jonghe P, Schenck A, van de Warrenburg BP. Brain. 2018 Sep 1;141(9):2592-2604. doi: 10.1093/brain/awy198.

Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Nicolas A, Kenna KP, Renton AE, Ticozzi N, Faghri F, Chia R, Dominov JA, Kenna BJ, Nalls MA, Keagle P, Rivera AM, van Rheenen W, Murphy NA, van Vugt JJFA, Geiger JT, Van der Spek RA, Pliner HA, Shankaracharya, Smith BN, Marangi G, Topp SD, Abramzon Y, Gkazi AS, Eicher JD, Kenna A; ITALSGEN Consortium, Mora G, Calvo A, Mazzini L, Riva N, Mandrioli J, Caponnetto C, Battistini S, Volanti P, La Bella V, Conforti FL, Borghero G, Messina S, Simone IL, Trojsi F, Salvi F, Logullo FO, D'Alfonso S, Corrado L, Capasso M, Ferrucci L; Genomic Translation for ALS Care (GTAC) Consortium, Moreno CAM, Kamalakaran S, Goldstein DB; ALS Sequencing Consortium, Gitler AD, Harris T, Myers RM; NYGC ALS Consortium, Phatnani H, Musunuri RL, Evani US, Abhyankar A, Zody MC; Answer ALS Foundation, Kaye J, Finkbeiner S, Wyman SK, LeNail A, Lima L, Fraenkel E, Svendsen CN, Thompson LM, Van Eyk JE, Berry JD, Miller TM, Kolb SJ, Cudkowicz M, Baxi E; Clinical Research in ALS and Related Disorders for Therapeutic Development (CReATe) Consortium, Benatar M, Taylor JP, Rampersaud E, Wu G, Wuu J; SLAGEN Consortium, Lauria G, Verde F, Fogh I, Tiloca C, Comi GP, Sorarù G, Cereda C; French ALS Consortium, Corcia P, Laaksovirta H, Myllykangas L, Jansson L, Valori M, Ealing J, Hamdalla H, Rollinson S, Pickering-Brown S, Orrell RW, et al. Neuron. 2018 Mar 21;97(6):1267-1288. doi: 10.1016/j.neuron.2018.02.027. PMID: 29566793; PMCID: PMC5867896.

Identification of compound heterozygous variants in OPTN in an ALS-FTD patient from the CReATe consortium: a case report. Pottier C, Rampersaud E, Baker M, Wu G, Wuu J, McCauley JL, Zuchner S, Schule R, Bermudez C, Hussain S, Cooley A, Wallace M, Zhang J, Taylor JP, Benatar M, Rademakers R. Amyotroph Lateral Scler Frontotemporal Degener. 2018 Aug;19(5-6):469-471. doi: 10.1080/21678421.2018.1452947. Epub 2018 Mar 20. PMID: 29558868; PMCID: PMC6116528.

MR Imaging-based Estimation of Upper Motor Neuron Density in Patients with Amyotrophic Lateral Sclerosis: A Feasibility Study. Chen J, Kostenko V, Pioro EP, Trapp BD. Radiology. 2018 Jun;287(3):955-964. doi: 10.1148/radiol.2018162967. Epub 2018 Jan 23. PMID: 29361242; PMCID: PMC5978454.

Mutations in ATP1A1 Cause Dominant Charcot-Marie-Tooth Type 2. Lassuthova P, Rebelo AP, Ravenscroft G, Lamont PJ, Davis MR, Manganelli F, Feely SM, Bacon C, Brožková DŠ, Haberlova J, Mazanec R, Tao F, Saghira C, Abreu L, Courel S, Powell E, Buglo E, Bis DM, Baxter MF, Ong RW, Marns L, Lee YC, Bai Y, Isom DG, Barro-Soria R, Chung KW, Scherer SS, Larsson HP, Laing NG, Choi BO, Seeman P, Shy ME, Santoro L, Zuchner S. Am J Hum Genet. 2018 Mar 1;102(3):505-514. doi: 10.1016/j.ajhg.2018.01.023. PMID: 29499166; PMCID: PMC5985288.

Sense and antisense RNA are not toxic in Drosophila models of C9orf72-associated ALS/FTD. Moens TG, Mizielinska S, Niccoli T, et al. Acta Neuropathol. 2018;135(3):445-457. PMID:29380049.

Serum neurofilament light chain is increased in hereditary spastic paraplegias. Wilke C, Rattay TW, Hengel H, Zimmermann M, Brockmann K, Schöls L, Kuhle J, Schüle R, Synofzik M. Annals of clinical and translational neurology. 2018;5(7):876-882. PMID:30009206, PMCID: PMC6043776.

Using automated electronic medical record data extraction to model ALS survival and progression. Karanevich AG, Weisbrod LJ, Jawdat O, Barohn RJ, Gajewski BJ, He J, Statland JM. BMC Neurol. 2018;18(1):205. PMID:30547800, PMCID: PMC6295028.

A C9ORF72 BAC mouse model recapitulates key epigenetic perturbations of ALS/FTD. Esanov R, Cabrera GT, Andrade NS, Gendron TF, Brown RH Jr, Benatar M, Wahlestedt C, Mueller C, Zeier Z. Mol Neurodegener. 2017 Jun 12;12(1):46. doi: 10.1186/s13024-017-0185-9. PMID: 28606110; PMCID: PMC5468954.

Abnormal expression of homeobox genes and transthyretin in C9ORF72 expansion carriers. Finch NA, Wang X, Baker MC, Heckman MG, Gendron TF, Bieniek KF, Wuu J, DeJesus-Hernandez M, Brown PH, Chew J, Jansen-West KR, Daughrity LM, Nicholson AM, Murray ME, Josephs KA, Parisi JE, Knopman DS, Petersen RC, Petrucelli L, Boeve BF, Graff-Radford NR, Asmann YW, Dickson DW, Benatar M, Bowser R, Boylan KB, Rademakers R, van Blitterswijk M. Neurol Genet. 2017 Jun 7;3(4):e161. doi: 10.1212/NXG.0000000000000161. PMID: 28660252; PMCID: PMC5479438.

Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria. Strong MJ, Abrahams S, Goldstein LH, Woolley S, Mclaughlin P, Snowden J, Mioshi E, Roberts-South A, Benatar M, HortobáGyi T, Rosenfeld J, Silani V, Ince PG, Turner MR. Amyotroph Lateral Scler Frontotemporal Degener. 2017 May;18(3-4):153-174. doi: 10.1080/21678421.2016.1267768. Epub 2017 Jan 5. PMID: 28054827; PMCID: PMC7409990.

Correlation of Peripheral Immunity With Rapid Amyotrophic Lateral Sclerosis Progression. Murdock BJ, Zhou T, Kashlan SR, Little RJ, Goutman SA, Feldman EL. JAMA Neurol. 2017 Dec 1;74(12):1446-1454. doi: 10.1001/jamaneurol.2017.2255. PMID: 28973548; PMCID: PMC5822195.

Cryptic amyloidogenic elements in mutant NEFH causing Charcot-Marie-Tooth 2 trigger aggresome formation and neuronal death. Jacquier A, Delorme C, Belotti E, Juntas-Morales R, Solé G, Dubourg O, Giroux M, Maurage CA, Castellani V, Rebelo A, Abrams A, Züchner S, Stojkovic T, Schaeffer L, Latour P. Acta Neuropathol Commun. 2017 Jul 14;5(1):55. doi: 10.1186/s40478-017-0457-1. PMID: 28709447; PMCID: PMC5513089.

Hereditary spastic paraplegia type 5: natural history, biomarkers and a randomized controlled trial. Schöls L, Rattay TW, Martus P, Meisner C, Baets J, Fischer I, Jägle C, Fraidakis MJ, Martinuzzi A, Saute JA, Scarlato M, Antenora A, Stendel C, Höflinger P, Lourenco CM, Abreu L, Smets K, Paucar M, Deconinck T, Bis DM, Wiethoff S, Bauer P, Arnoldi A, Marques W, Jardim LB, Hauser S, Criscuolo C, Filla A, Züchner S, Bassi MT, Klopstock T, De Jonghe P, Björkhem I, Schüle R. Brain. 2017 Dec 1;140(12):3112-3127. doi: 10.1093/brain/awx273. PMID: 29126212; PMCID: PMC5841036.

In-depth clinico-pathological examination of RNA foci in a large cohort of C9ORF72 expansion carriers. DeJesus-Hernandez M, Finch NA, Wang X, Gendron TF, Bieniek KF, Heckman MG, Vasilevich A, Murray ME, Rousseau L, Weesner R, Lucido A, Parsons M, Chew J, Josephs KA, Parisi JE, Knopman DS, Petersen RC, Boeve BF, Graff-Radford NR, de Boer J, Asmann YW, Petrucelli L, Boylan KB, Dickson DW, van Blitterswijk M, Rademakers R. Acta Neuropathol. 2017 Aug;134(2):255-269. doi: 10.1007/s00401-017-1725-7. Epub 2017 May 15. PMID: 28508101; PMCID: PMC5508036.

Phosphorylated neurofilament heavy chain: A biomarker of survival for C9ORF72-associated amyotrophic lateral sclerosis. Gendron TF; C9ORF72 Neurofilament Study Group, Daughrity LM, Heckman MG, Diehl NN, Wuu J, Miller TM, Pastor P, Trojanowski JQ, Grossman M, Berry JD, Hu WT, Ratti A, Benatar M, Silani V, Glass JD, Floeter MK, Jeromin A, Boylan KB, Petrucelli L. Ann Neurol. 2017 Jul;82(1):139-146. doi: 10.1002/ana.24980. PMID: 28628244; PMCID: PMC5676468.

Poly(GP) proteins are a useful pharmacodynamic marker for C9ORF72-associated amyotrophic lateral sclerosis. Gendron TF, Chew J, Stankowski JN, Hayes LR, Zhang YJ, Prudencio M, Carlomagno Y, Daughrity LM, Jansen-West K, Perkerson EA, O'Raw A, Cook C, Pregent L, Belzil V, van Blitterswijk M, Tabassian LJ, Lee CW, Yue M, Tong J, Song Y, Castanedes-Casey M, Rousseau L, Phillips V, Dickson DW, Rademakers R, Fryer JD, Rush BK, Pedraza O, Caputo AM, Desaro P, Palmucci C, Robertson A, Heckman MG, Diehl NN, Wiggs E, Tierney M, Braun L, Farren J, Lacomis D, Ladha S, Fournier CN, McCluskey LF, Elman LB, Toledo JB, McBride JD, Tiloca C, Morelli C, Poletti B, Solca F, Prelle A, Wuu J, Jockel-Balsarotti J, Rigo F, Ambrose C, Datta A, Yang W, Raitcheva D, Antognetti G, McCampbell A, Van Swieten JC, Miller BL, Boxer AL, Brown RH, Bowser R, Miller TM, Trojanowski JQ, Grossman M, Berry JD, Hu WT, Ratti A, Traynor BJ, Disney MD, Benatar M, Silani V, Glass JD, Floeter MK, Rothstein JD, Boylan KB, Petrucelli L. Sci Transl Med. 2017;9(383). PMID: 28356511, PMCID: PMC5576451.

Repetitive element transcripts are elevated in the brain of C9orf72 ALS/FTLD patients. Prudencio M, Gonzales PK, Cook CN, Gendron TF, Daughrity LM, Song Y, Ebbert MTW, van Blitterswijk M, Zhang YJ, Jansen-West K, Baker MC, DeTure M, Rademakers R, Boylan KB, Dickson DW, Petrucelli L, Link CD. Hum Mol Genet. 2017;26(17):3421-3431. PMID: 28637276.

Research Toolkit: Capturing clinical data to advance ALS research. Michael Benatar, Jonathan Katz, David Walk CReATe Consortium ALS Association Muscular Dystrophy Association (MDA). Capturing clinical data to advance ALS research. https://galaxy.epic.com/Redirect.aspx?DocumentID=3701881&Version=Epic 2017, EpicCare Ambulatory, 2017.

TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics. Mackenzie IR, Nicholson AM, Sarkar M, Messing J, Purice MD, Pottier C, Annu K, Baker M, Perkerson RB, Kurti A, Matchett BJ, Mittag T, Temirov J, Hsiung GR, Krieger C, Murray ME, Kato M, Fryer JD, Petrucelli L, Zinman L, Weintraub S, Mesulam M, Keith J, Zivkovic SA, Hirsch-Reinshagen V, Roos RP, Züchner S, Graff-Radford NR, Petersen RC, Caselli RJ, Wszolek ZK, Finger E, Lippa C, Lacomis D, Stewart H, Dickson DW, Kim HJ, Rogaeva E, Bigio E, Boylan KB, Taylor JP, Rademakers R. Neuron. 2017;95(4):808-816.e809. PMID: 28817800, PMCID: PMC5576574.

Urinary p75(ECD): A prognostic, disease progression, and pharmacodynamic biomarker in ALS. Shepheard SR, Wuu J, Cardoso M, Wiklendt L, Dinning PG, Chataway T, Schultz D, Benatar M, Rogers ML. Neurology. 2017;88(12):1137-1143. PMID: 28228570, PMCID: PMC5373786.

ALS biomarkers for therapy development: State of the field and future directions. Benatar M, Boylan K, Jeromin A, Rutkove SB, Berry J, Atassi N, Bruijn L. Muscle Nerve. Feb 2016;53(2):169-182. PMID: 26574709, PMCID: PMC4718795.

C9orf72 BAC Mouse Model with Motor Deficits and Neurodegenerative Features of ALS/FTD. Liu Y, Pattamatta A, Zu T, et al. Neuron. 2016 May 4;90(3):521-34. doi: 10.1016/j.neuron.2016.04.005. Epub 2016 Apr 21. PMID: 27112499.

C9orf72 promoter hypermethylation is reduced while hydroxymethylation is acquired during reprogramming of ALS patient cells. Esanov R, Belle KC, van Blitterswijk M, Belzil VV, Rademakers R, Dickson DW, Petrucelli L, Boylan KB, Dykxhoorn DM, Wuu J, Benatar M, Wahlestedt C, Zeier Z. Exp Neurol. Mar 2016;277:171-177. PMID: 26746986, PMCID: PMC4761318.

Cryptic Amyloidogenic Elements in the 3' UTRs of Neurofilament Genes Trigger Axonal Neuropathy. Rebelo AP, Abrams AJ, Cottenie E, Horga A, Gonzalez M, Bis DM, Sanchez-Mejias A, Pinto M, Buglo E, Markel K, Prince J, Laura M, Houlden H, Blake J, Woodward C, Sweeney MG, Holton JL, Hanna M, Dallman JE, Auer-Grumbach M, Reilly MM, Zuchner S. Am J Hum Genet. 2016 Apr 7;98(4):597-614. doi: 10.1016/j.ajhg.2016.02.022. Epub 2016 Mar 31. PMID: 27040688; PMCID: PMC4833435.

Increased ratio of circulating neutrophils to monocytes in amyotrophic lateral sclerosis. Murdock BJ, Bender DE, Kashlan SR, et al. Neurol Neuroimmunol Neuroinflamm. 2016 Jun 1;3(4):e242. doi: 10.1212/NXI.0000000000000242. PMID: 27308304; PMCID: PMC4897983.

Presymptomatic ALS genetic counseling and testing: Experience and recommendations. Benatar M, Stanislaw C, Reyes E, Hussain S, Cooley A, Fernandez MC, Dauphin DD, Michon SC, Andersen PM, Wuu J.. Neurology. 2016 Jun 14;86(24):2295-302. doi: 10.1212/WNL.0000000000002773. Epub 2016 May 18.

Cerebellar c9RAN proteins associate with clinical and neuropathological characteristics of C9ORF72 repeat expansion carriers. Gendron TF, van Blitterswijk M, Bieniek KF, Daughrity LM, Jiang J, Rush BK, Pedraza O, Lucas JA, Murray ME, Desaro P, Robertson A, Overstreet K, Thomas CS, Crook JE, Castanedes-Casey M, Rousseau L, Josephs KA, Parisi JE, Knopman DS, Petersen RC, Boeve BF, Graff-Radford NR, Rademakers R, Lagier-Tourenne C, Edbauer D, Cleveland DW, Dickson DW, Petrucelli L, Boylan KB. Acta Neuropathol. Oct 2015;130(4):559-573. PMID: 26350237, PMCID: PMC4575385.

Ensuring continued progress in biomarkers for amyotrophic lateral sclerosis. Turner MR, Benatar M. Muscle Nerve. Jan 2015;51(1):14-18. PMID: 25288265, PMCID: PMC4270289.

Neurodegenerative disease: C9orf72 repeats compromise nucleocytoplasmic transport. van Blitterswijk M, Rademakers R. Nat Rev Neurol. 2015 Dec;11(12):670-2. doi: 10.1038/nrneurol.2015.219. Epub 2015 Nov 3. PMID: 26526532.

Novel clinical associations with specific C9ORF72 transcripts in patients with repeat expansions in C9ORF72. van Blitterswijk M, Gendron TF, Baker MC, DeJesus-Hernandez M, Finch NA, Brown PH, Daughrity LM, Murray ME, Heckman MG, Jiang J, Lagier-Tourenne C, Edbauer D, Cleveland DW, Josephs KA, Parisi JE, Knopman DS, Petersen RC, Petrucelli L, Boeve BF, Graff-Radford NR, Boylan KB, Dickson DW, Rademakers R. Acta Neuropathol. Oct 5 2015. PMID: 26437865, PMCID: PMC4655160.

Phenotypic and molecular insights into spinal muscular atrophy due to mutations in BICD2. Rossor AM, Oates EC, Salter HK, Liu Y, Murphy SM, Schule R, Gonzalez MA, Scoto M, Phadke R, Sewry CA, Houlden H, Jordanova A, Tournev I, Chamova T, Litvinenko I, Zuchner S, Herrmann DN, Blake J, Sowden JE, Acsadi G, Rodriguez ML, Menezes MP, Clarke NF, Auer Grumbach M, Bullock SL, Muntoni F, Reilly MM, North KN. Brain. 2015 Feb;138(Pt 2):293-310. doi: 10.1093/brain/awu356. Epub 2014 Dec 14. PMID: 25497877; PMCID: PMC4306822.

Maternal and Perinatal Outcomes Associated With the Omicron Variant of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection. Seasely AR, Blanchard CT, Arora N, Battarbee AN, Casey BM, Dionne-Odom J, Leal SM Jr, Moates DB, Sinkey RG, Szychowski JM, Tita AT, Subramaniam A; CWRH's COVID-19 Working Group;. Obstet Gynecol. 2022 Aug 1;140(2):262-265. doi: 10.1097/AOG.0000000000004849. Epub 2022 May 18. PMID: 35852277.

Maternal and Perinatal Outcomes Associated With the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Delta (B.1.617.2) Variant. Seasely AR, Blanchard CT, Arora N, Battarbee AN, Casey BM, Dionne-Odom J, Leal SM Jr, Moates DB, Sinkey RG, Szychowski JM, Tita AT, Subramaniam A; CWRH COVID-19 Working Group. Obstet Gynecol. 2021 Dec 1;138(6):842-844. doi: 10.1097/AOG.0000000000004607. PMID: 34592747.

A MULTICENTER LONG-TERM COHORT STUDY OF EOSINOPHILIC ESOPHAGITIS VARIANTS AND THEIR PROGRESSION TO EOE OVER TIME. Greuter T, Straumann A, Fernandez-Marrero Y, Germic N, Hosseini A, Chanwangpong A, Yousefi S, Simon D, Collins MH, Bussmann C, Chehade M, Dellon ES, Furuta GT, Gonsalves N, Hirano I, Moawad FJ, Biedermann L, Safroneeva E, Schoepfer AM, Simon HU. Clin Transl Gastroenterol. 2024 Feb 6. doi: 10.14309/ctg.0000000000000664. Epub ahead of print. PMID: 38318864.

Eosinophilic esophagitis (EoE) is a disorder in which eosinophils (white blood cells of the immune system) build up in the esophagus (the tube that carries food from the mouth to the stomach), causing tissue damage. Recently, conditions with symptoms of esophageal dysfunction resembling EoE—but without high amounts of eosinophils in the esophagus—have been characterized as EoE variants. However, not much is known about the progression and severity of these variants.

In this study, researchers investigated the progression of EoE variants to EoE over time. The team assessed clinical, immuno-histological, and molecular features of 54 patients with EoE variants from six EoE centers. Findings were compared with features of EoE patients and healthy controls.

Results suggest a disease spectrum, based on transition from EoE variants to EoE. Authors note that genes associated with the progression to EoE may represent potential therapeutic targets early in the course of disease. 

Ascending to New Heights for Novel Therapeutics for Eosinophilic Esophagitis. Hirano I, Dellon ES, Falk GW, Gonsalves NP, Furuta GT, Bredenoord AJ; ASCENT WORKING GROUP. Gastroenterology. 2024 Jan;166(1):1-10. doi: 10.1053/j.gastro.2023.09.004. Epub 2023 Sep 9.

Barriers to Timely Diagnosis of Eosinophilic Gastrointestinal Diseases. Chehade M, McGowan EC, Wright BL, Muir AB, Klion AD, Furuta GT, Jensen ET, Bailey DD. J Allergy Clin Immunol Pract. 2024 Feb;12(2):302-308. doi: 10.1016/j.jaip.2023.12.020. Epub 2023 Dec 17.

Characterization of lamina propria remodeling in pediatric eosinophilic esophagitis using second harmonic generation microscopy. Haugen EJ, Locke AK, Correa H, Baba JS, Mahadevan-Jansen A, Hiremath G. Transl Med Commun. 2024;9(1):10. doi: 10.1186/s41231-024-00170-2. Epub 2024 Mar 22.

Clinical and molecular correlates of the Index of Severity for Eosinophilic Esophagitis. Sato H, Dellon ES, Aceves SS, Arva NC, Chehade M, Collins MH, Davis CM, Falk GW, Furuta GT, Gonsalves NP, Gupta SK, Hirano I, Hiremath G, Katzka DA, Khoury P, Leung J, Menard-Katcher P, Pesek R, Peterson KA, Pletneva MA, Spergel JM, Wechsler JB, Yang GY, Rothenberg ME, Shoda T. J Allergy Clin Immunol. 2024 May 13:S0091-6749(24)00465-2. doi: 10.1016/j.jaci.2024.04.025. Online ahead of print.

Common and disparate clinical presentations and mechanisms in different eosinophilic gastrointestinal diseases. Shoda T, Taylor RJ, Sakai N, Rothenberg ME. J Allergy Clin Immunol. 2024 Jun;153(6):1472-1484. doi: 10.1016/j.jaci.2024.03.013. Epub 2024 Mar 28.

Endoscopic Features of Eosinophilic Gastrointestinal Diseases. Greuter T, Katzka D. Immunol Allergy Clin North Am. 2024 May;44(2):357-368. doi: 10.1016/j.iac.2024.01.007. Epub 2024 Feb 13.

Histological Phenotyping in Eosinophilic Esophagitis: Localized Proximal Disease Is Infrequent but Associated with Less Severe Disease and Better Disease Outcome. Heil A, Kuehlewindt T, Godat A, Simon HU, Simon D, Schreiner P, Saner C, Vavricka SR, Biedermann L, Safroneeva E, Rossel JB, Limacher A, Straumann A, Schoepfer AM, Greuter T. Int Arch Allergy Immunol. 2024;185(1):63-72. doi: 10.1159/000533815. Epub 2023 Oct 20.

Impact of the COVID-19 Pandemic on People Living With Rare Diseases and Their Families: Results of a National Survey. Macaluso M, Rothenberg ME, Ferkol T, Kuhnell P, Kaminski HJ, Kimberlin DW, Benatar M, Chehade M; Principal Investigators of the Rare Diseases Clinical Research Network – Cycle 4. JMIR Public Health Surveill. 2024 Feb 14;10:e48430. doi: 10.2196/48430.

The Relationship Between Eosinophilic Esophagitis and Immunotherapy. Wilson BE, Sacta MA, Wright BL, Spergel J, Wolfset N. Immunol Allergy Clin North Am. 2024 May;44(2):281-291. doi: 10.1016/j.iac.2024.01.001. Epub 2024 Feb 14.

Triggers for eosinophilic esophagitis (EoE): The intersection of food allergy and EoE. Burk CM, Shreffler WG. J Allergy Clin Immunol. 2024 Jun;153(6):1500-1509. doi: 10.1016/j.jaci.2024.04.010.

Benralizumab for eosinophilic gastritis: a single-site, randomised, double-blind, placebo-controlled, phase 2 trial. Kliewer KL, Murray-Petzold C, Collins MH, Abonia JP, Bolton SM, DiTommaso LA, Martin LJ, Zhang X, Mukkada VA, Putnam PE, Kellner ES, Devonshire AL, Schwartz JT, Kunnathur VA, Rosenberg CE, Lyles JL, Shoda T, Klion AD, Rothenberg ME. Lancet Gastroenterol Hepatol. 2023 Sep;8(9):803-815. doi: 10.1016/S2468-1253(23)00145-0. Epub 2023 Jun 16.

Biologics in eosinophilic gastrointestinal diseases. Dellon ES, Spergel JM. Ann Allergy Asthma Immunol. 2023 Jan;130(1):21-27. doi: 10.1016/j.anai.2022.06.015. Epub 2022 Jun 20.

Breaking down the complex pathophysiology of eosinophilic esophagitis. Underwood B, Troutman TD, Schwartz JT. Ann Allergy Asthma Immunol. 2023 Jan;130(1):28-39. doi: 10.1016/j.anai.2022.10.026. Epub 2022 Nov 6.

Breakthroughs in understanding and treating eosinophilic gastrointestinal diseases presented at the CEGIR/TIGERs Symposium at the 2022 American Academy of Allergy, Asthma & Immunology Meeting. Chehade M, Wright BL, Atkins D, Aceves SS, Ackerman SJ, Assa'ad AH, Bauer M, Collins MH, Commins SP, Davis CM, Dellon ES, Doerfler B, Gleich GJ, Gupta SK, Hill DA, Jensen ET, Katzka D, Kliewer K, Kodroff E, Kottyan LC, Kyle S, Muir AB, Pesek RD, Peterson K, Shreffler WG, Spergel JM, Strobel MJ, Wechsler J, Zimmermann N, Furuta GT, Rothenberg ME. J Allergy Clin Immunol. 2023 Sep 1:S0091-6749(23)01103-X. doi: 10.1016/j.jaci.2023.08.021. Online ahead of print.

Eosinophilic gastrointestinal disorders (EGIDs) are a group of chronic immune system disorders in which a type of white blood cell (eosinophils) build up in the gastrointestinal tract, causing inflammation or injury. 

In February 2022, the American Academy of Allergy, Asthma, and Immunology hosted their annual meeting to discuss innovations in research. During the meeting, CEGIR and the International Gastrointestinal Eosinophil Researchers organized a day-long symposium focused on breakthrough discoveries in EGIDs.

The symposium featured a review of recent discoveries in the basic biology, pathogenesis, and clinical features of EGIDs. Topics included diagnostic and management approaches, as well as clinical trials of emerging therapies.

Concepts and Controversies in Eosinophilic Esophagitis: What's Coming Down the Pipe?. Peterson K, Collins MH, Aceves SS, Chehade M, Gonsalves N. Gastroenterology. 2024 Mar;166(3):382-395. doi: 10.1053/j.gastro.2023.10.035. Epub 2023 Dec 3.

Detergent exposure induces epithelial barrier dysfunction and eosinophilic inflammation in the esophagus. Doyle AD, Masuda MY, Pyon GC, Luo H, Putikova A, LeSuer WE, Flashner S, Rank MA, Nakagawa H, Kita H, Wright BL. Allergy. 2023 Jan;78(1):192-201. doi: 10.1111/all.15457. Epub 2022 Aug 8.

Development of a Practical Guide to Implement and Monitor Diet Therapy for Eosinophilic Esophagitis. Chang JW, Kliewer K, Haller E, Lynett A, Doerfler B, Katzka DA, Peterson KA, Dellon ES, Gonsalves N; Consortium of Eosinophilic Gastrointestinal Disease Researchers. Clin Gastroenterol Hepatol. 2023 Jul;21(7):1690-1698. doi: 10.1016/j.cgh.2023.03.006. Epub 2023 Mar 16.

Direct-to-Consumer Recruitment Methods via Traditional and Social Media to Aid in Research Accrual for Clinical Trials for Rare Diseases: Comparative Analysis Study. Applequist J, Burroughs C, Merkel PA, Rothenberg M, Trapnell B, Desnick R, Sahin M, Krischer J. J Med Internet Res. 2023 Mar 14;25:e39262. doi: 10.2196/39262.

Dysphagia Days as an Assessment of Clinical Treatment Outcome in Eosinophilic Esophagitis. Hirano I, Rothenberg ME, Zhang S, de Oliveira C, Charriez CM, Coyne KS, Bacci ED, Dellon ES. Am J Gastroenterol. 2023 Apr 1;118(4):744-747. doi: 10.14309/ajg.0000000000002094. Epub 2022 Dec 20.

Efficacy and safety of dupilumab up to 52 weeks in adults and adolescents with eosinophilic oesophagitis (LIBERTY EoE TREET study): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Rothenberg ME, Dellon ES, Collins MH, Hirano I, Chehade M, Bredenoord AJ, Lucendo AJ, Spergel JM, Sun X, Hamilton JD, Mortensen E, Laws E, Maloney J, Mannent LP, McCann E, Liu X, Glotfelty L, Shabbir A. Lancet Gastroenterol Hepatol. 2023 Aug 31:S2468-1253(23)00204-2. doi: 10.1016/S2468-1253(23)00204-2. Online ahead of print.

Enhancing diversity, equity, inclusion, and accessibility in eosinophilic gastrointestinal disease research: the consortium for eosinophilic gastrointestinal disease researchers' journey. Chehade M, Furuta G, Klion A, Abonia JP, Aceves S, Bose P, Collins MH, Davis C, Dellon ES, Eickel G, Falk G, Gupta S, Hiremath G, Howard A, Jensen ET, Kesh S, Khoury P, Kocher K, Kodroff E, Kyle S, Mak N, McCoy D, Mehta P, Menard-Katcher P, Mukkada V, Paliana A, Rothenberg M, Sable K, Schmitt C, Scott M, Spergel J, Strobel MJ, Wechsler JB, Yang GY, Zicarelli A, Muir AB, Wright BL, Bailey DD. Ther Adv Rare Dis. 2023 Aug 14;4:26330040231180895. doi: 10.1177/26330040231180895. PMID: 37588777; PMCID: PMC10426297

Eosinophilic gastrointestinal diseases (EGIDs) are a group of chronic immune system disorders in which inflammation causes difficulties in daily life and the buildup of a type of white blood cell (eosinophils) in the gastrointestinal tract, which can lead to tissue damage and dysfunction.

To address systemic bias in patient care and research in EGIDs, the Consortium of Eosinophilic Gastrointestinal Disease Researchers (CEGIR) recently formed a diversity committee. The CEGIR diversity committee has defined its purpose through mission and vision statements. The committee has also developed structured educational and research initiatives to enhance diversity, equity, inclusivity, and accessibility (DEIA) in all CEGIR activities.

In this review article, researchers share the process of forming the diversity committee, highlighting milestones achieved and summarizing future directions. Authors hope that this report will serve as a guide and an inspiration for other researchers to enhance DEIA in their fields.

Eosinophilic Esophagitis beyond Eosinophils - an Emerging Phenomenon Overlapping with Eosinophilic Esophagitis: Collegium Internationale Allergologicum (CIA) Update 2023. Salvador Nunes VS, Straumann A, Salvador Nunes L, Schoepfer AM, Greuter T. Int Arch Allergy Immunol. 2023;184(5):411-420. doi: 10.1159/000529910. Epub 2023 Mar 27.

Esophageal Epithelium and Lamina Propria Are Unevenly Involved in Eosinophilic Esophagitis. Hiremath G, Sun L, Collins MH, Bonis PA, Arva NC, Capocelli KE, Chehade M, Davis CM, Falk GW, Gonsalves N, Gupta SK, Hirano I, Leung J, Khoury P, Mukkada VA, Martin LJ, Spergel JM, Wechsler JB, Yang GY, Aceves SS, Furuta GT, Rothenberg ME, Koyama T, Dellon ES. Clin Gastroenterol Hepatol. 2023 Mar 24:S1542-3565(23)00222-7. doi: 10.1016/j.cgh.2023.03.014. Online ahead of print.

Eosinophilic esophagitis (EoE) is a disorder in which eosinophils (white blood cells of the immune system) build up in the esophagus (the tube that carries food from the mouth to the stomach), causing tissue damage. The nature of the involvement of esophageal tissue has been unclear.

In this study, the investigators estimated the intrabiopsy site agreements of an established EoE histologic scoring system (EoEHSS) in the esophageal epithelial and lamina propria and examined if the disease activity status influenced the intrabiopsy site agreement. Comparisons were made between proximal:distal, proximal:middle, and middle:distal esophageal biopsy sites.

Results show that except for the extent of dilated intercellular spaces in inactive EoE, epithelial features and lamina propria were unevenly affected across esophageal biopsy sites, regardless of disease status. Authors note that these findings enhance our understanding of the effects of EoE on esophageal tissue pathology.

Examining Disparities in Pediatric Eosinophilic Esophagitis. Mehta P, Pan Z, Zhou W, Burger C, Menard-Katcher C, Bailey DD, Furuta GT. J Allergy Clin Immunol Pract. 2023 Sep;11(9):2855-2859. doi: 10.1016/j.jaip.2023.06.011. Epub 2023 Jun 14.

Food-Specific IgG4 Is Elevated Throughout the Upper Gastrointestinal Tract in Eosinophilic Esophagitis. Masuda MY, LeSuer WE, Horsley-Silva JL, Putikova A, Buras MR, Gibson JB, Pyon GC, Simmons TD, Doyle AD, Wright BL. Dig Dis Sci. 2023 Jun;68(6):2406-2413. doi: 10.1007/s10620-023-07924-2. Epub 2023 Mar 27.

Genome-wide admixture and association analysis identifies African ancestry-specific risk loci of eosinophilic esophagitis in African Americans. Gautam Y, Caldwell J, Kottyan L, Chehade M, Dellon ES, Rothenberg ME, Mersha TB; Consortium of Eosinophilic Gastrointestinal Disease Researchers (CEGIR) investigators. J Allergy Clin Immunol. 2023 May;151(5):1337-1350. doi: 10.1016/j.jaci.2022.09.040. Epub 2022 Nov 15.

Local type 2 immunity in eosinophilic gastritis. Ben-Baruch Morgenstern N, Shoda T, Rochman Y, Caldwell JM, Collins MH, Mukkada V, Putnam PE, Bolton SM, Felton JM, Rochman M, Murray-Petzold C, Kliewer KL, Rothenberg ME. J Allergy Clin Immunol. 2023 Jul;152(1):136-144. doi: 10.1016/j.jaci.2023.01.021. Epub 2023 Feb 7.

Medication Adherence Rates in Adolescents With Eosinophilic Esophagitis Are Low and Are Associated With Health Habits. Mehta P, Pan Z, Zhou W, Kwan BM, Furuta GT. J Pediatr Gastroenterol Nutr. 2023 Oct 1;77(4):532-535. doi: 10.1097/MPG.0000000000003885. Epub 2023 Sep 20.

Molecular analysis of duodenal eosinophilia. Shoda T, Rochman M, Collins MH, Caldwell JM, Mack LE, Osswald GA, Mukkada VA, Putnam PE, Rothenberg ME. J Allergy Clin Immunol. 2023 Apr;151(4):1027-1039. doi: 10.1016/j.jaci.2022.12.814. Epub 2022 Dec 30.

Mucosal Microbiota Associated With Eosinophilic Esophagitis and Eosinophilic Gastritis. Furuta GT, Fillon SA, Williamson KM, Robertson CE, Stevens MJ, Aceves SS, Arva NC, Chehade M, Collins MH, Davis CM, Dellon ES, Falk GW, Gonsalves N, Gupta SK, Hirano I, Khoury P, Leung J, Martin LJ, Menard-Katcher P, Mukkada VA, Peterson K, Spergel JM, Wechsler JB, Yang GY, Rothenberg ME, Harris JK. J Pediatr Gastroenterol Nutr. 2023 Mar 1;76(3):347-354. doi: 10.1097/MPG.0000000000003685. Epub 2022 Dec 16. PMID: 36525669.

Eosinophilic esophagitis (EoE) and eosinophilic gastritis (EoG) are disorders in which eosinophils (white blood cells) of the immune system build up as a reaction to foods or allergens, causing tissue damage. This immune response occurs in the esophagus in EoE and in the stomach in EoG. To better understand the association of gut microbiota (microorganisms in the digestive tract) with EoE and EoG, multicenter studies with large patient cohorts are needed.

In this study, researchers identified the mucosal microbiota associated with EoE and EoG in a geographically diverse cohort of patients. The team collected and analyzed clinical data, mucosal biopsies, and stool of pediatric and adult individuals with eosinophilic gastrointestinal disease (EGID) from 10 clinical sites within the Consortium of Eosinophilic Gastrointestinal Disease Researchers.

Not surprisingly, microbiome samples collected in the esophagus and stomach were not similar to those collected in the stool, thus emphasizing the importance of site-specific capture of data. Taxa associated with EGIDs varied highly among individuals. Authors note that further research is needed to determine if therapeutic interventions contribute to these differences.

One-food versus six-food elimination diet therapy for the treatment of eosinophilic oesophagitis: a multicentre, randomised, open-label trial. Kliewer KL, Gonsalves N, Dellon ES, Katzka DA, Abonia JP, Aceves SS, Arva NC, Besse JA, Bonis PA, Caldwell JM, Capocelli KE, Chehade M, Cianferoni A, Collins MH, Falk GW, Gupta SK, Hirano I, Krischer JP, Leung J, Martin LJ, Menard-Katcher P, Mukkada VA, Peterson KA, Shoda T, Rudman Spergel AK, Spergel JM, Yang GY, Zhang X, Furuta GT, Rothenberg ME. Lancet Gastroenterol Hepatol. 2023 May;8(5):408-421. doi: 10.1016/S2468-1253(23)00012-2. Epub 2023 Feb 28.

Persistent esophageal changes after histologic remission in eosinophilic esophagitis. Ruffner MA, Shoda T, Lal M, Mrozek Z, Muir AB, Spergel JM, Dellon ES, Rothenberg ME. J Allergy Clin Immunol. 2024 Apr;153(4):1063-1072. doi: 10.1016/j.jaci.2023.12.012. Epub 2023 Dec 27.

Predicting Incident Adenocarcinoma of the Esophagus or Gastric Cardia Using Machine Learning of Electronic Health Records. Rubenstein JH, Fontaine S, MacDonald PW, Burns JA, Evans RR, Arasim ME, Chang JW, Firsht EM, Hawley ST, Saini SD, Wallner LP, Zhu J, Waljee AK. Gastroenterology. 2023 Dec;165(6):1420-1429.e10. doi: 10.1053/j.gastro.2023.08.011. Epub 2023 Aug 18.

Prospective study of an amino acid-based elemental diet in an eosinophilic gastritis and gastroenteritis nutrition trial. Gonsalves N, Doerfler B, Zalewski A, Yang GY, Martin LJ, Zhang X, Shoda T, Brusilovsky M, Aceves S, Thompson K, Rudman Spergel AK, Furuta G, Rothenberg ME, Hirano I. J Allergy Clin Immunol. 2023 Sep;152(3):676-688. doi: 10.1016/j.jaci.2023.05.024. Epub 2023 Jul 18.

Quality Indicators for the Diagnosis and Management of Eosinophilic Esophagitis. Leiman DA, Kamal AN, Otaki F, Bredenoord AJ, Dellon ES, Falk GW, Fernandez-Becker NQ, Gonsalves N, Hirano I, Katzka DA, Peterson K, Yadlapati R, Kathpalia P. Am J Gastroenterol. 2023 Jun 1;118(6):1091-1095. doi: 10.14309/ajg.0000000000002138. Epub 2022 Dec 23.

Recent Advances in the Treatment of Eosinophilic Esophagitis. Uchida AM, Burk CM, Rothenberg ME, Furuta GT, Spergel JM. J Allergy Clin Immunol Pract. 2023 Sep;11(9):2654-2663. doi: 10.1016/j.jaip.2023.06.035. Epub 2023 Jun 28.

The Cellie Coping Kit for children with Eosinophilic Esophagitis: Feasibility, acceptability, and preliminary outcomes. Benitez AJ, McGar A, Kohser K, Gibbons T, Muir A, Mascarenhas M, Rossi C, Dogias F, Golden A, Kassam-Adams N, Marsac ML. J Child Health Care. 2023 Sep;27(3):374-385. doi: 10.1177/13674935211064126. Epub 2022 Jan 3.

The role of biologics in pediatric food allergy and eosinophilic gastrointestinal disorders. Sindher SB, Barshow S, Tirumalasetty J, Arasi S, Atkins D, Bauer M, Bégin P, Collins MH, Deschildre A, Doyle AD, Fiocchi A, Furuta GT, Garcia-Lloret M, Mennini M, Rothenberg ME, Spergel JM, Wang J, Wood RA, Wright BL, Zuberbier T, Chin AR, Long A, Nadeau KC, Chinthrajah RS. J Allergy Clin Immunol. 2023 Mar;151(3):595-606. doi: 10.1016/j.jaci.2023.01.007. PMID: 36872039; PMCID: PMC9993424.

Eosinophilic gastrointestinal disorders (EGIDs) are a group of chronic immune system disorders in which a type of white blood cell (eosinophils) build up in the gastrointestinal tract, causing inflammation or injury. EGIDs and food allergy (FA) share similar inflammatory mechanisms. Because of this, many of the same biologics (medications developed from biological sources) are being investigated to target these mechanisms in both EGIDs and FA.

In this review article, a team of researchers led by CEGIR scholars discuss the enormous potential of biologics for the treatment of EGIDs and FA in pediatric patients. Discussion includes past and current research into the use of biologics in FA and EGIDs, as well as their potential role in improving treatment options in the future. Authors also note the need for wider availability of biologics for clinical use.

2021 year in review: Spotlight on eosinophils. Dunn JLM, Rothenberg ME. J Allergy Clin Immunol. 2022 Feb;149(2):517-524. doi: 10.1016/j.jaci.2021.11.012. Epub 2021 Nov 25.

A Clinical Severity Index for Eosinophilic Esophagitis: Development, Consensus, and Future Directions. Dellon ES, Khoury P, Muir AB, Liacouras CA, Safroneeva E, Atkins D, Collins MH, Gonsalves N, Falk GW, Spergel JM, Hirano I, Chehade M, Schoepfer AM, Menard-Katcher C, Katzka DA, Bonis PA, Bredenoord AJ, Geng B, Jensen ET, Pesek RD, Feuerstadt P, Gupta SK, Lucendo AJ, Genta RM, Hiremath G, McGowan EC, Moawad FJ, Peterson KA, Rothenberg ME, Straumann A, Furuta GT, Aceves SS. Gastroenterology. 2022 Jul;163(1):59-76. doi: 10.1053/j.gastro.2022.03.025. Epub 2022 May 20. PMID: 35606197; PMCID: PMC9233087.

For patients with eosinophilic esophagitis (EoE), an allergic inflammatory disease that damages the esophagus, therapeutic options and management are dictated by disease severity. However, the process for determining severity varies among practitioners. Reducing this variability could help improve clinicians’ ability to monitor EoE in an office setting. In this study, researchers aimed to create an international consensus severity scoring index for EoE. First, a group of adult and pediatric EoE researchers and clinicians—as well as non-EoE allergy immunology and gastroenterology experts—reviewed existing literature on EoE in the context of progression and severity. Next, a steering committee reached consensus on important features of severity. These features were then distilled to categorize patients with EoE as having inactive, mild, moderate, or severe disease. This new simplified scoring system, called the Index of Severity for Eosinophilic Esophagitis (I-SEE), can be completed at routine clinic visits. The system can help guide practitioners in EoE management by standardizing features of disease severity beyond eosinophil counts. To increase its utilization and functionality, authors note that I-SEE should be validated and refined using data from future clinical trials and routine clinical practice.

A Clinical Severity Index for Eosinophilic Esophagitis: Development, Consensus, and Future Directions. Dellon ES, Khoury P, Muir AB, Liacouras CA, Safroneeva E, Atkins D, Collins MH, Gonsalves N, Falk GW, Spergel JM, Hirano I, Chehade M, Schoepfer AM, Menard-Katcher C, Katzka DA, Bonis PA, Bredenoord AJ, Geng B, Jensen ET, Pesek RD, Feuerstadt P, Gupta SK, Lucendo AJ, Genta RM, Hiremath G, McGowan EC, Moawad FJ, Peterson KA, Rothenberg ME, Straumann A, Furuta GT, Aceves SS. J Allergy Clin Immunol. 2022 Jul;150(1):33-47. doi: 10.1016/j.jaci.2022.03.015. Epub 2022 May 20.

A Deep Multi-Label Segmentation Network For Eosinophilic Esophagitis Whole Slide Biopsy Diagnostics. Daniel N, Larey A, Aknin E, Osswald GA, Caldwell JM, Rochman M, Collins MH, Yang GY, Arva NC, Capocelli KE, Rothenberg ME, Savir Y. Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3211-3217. doi: 10.1109/EMBC48229.2022.9871086.

A survey examining the impact of COVID-19 on food protein-induced enterocolitis syndrome. Trogen B, Jin H, Cianferoni A, Chehade M, Schultz F, Chavez A, Warren C, Nowak-Wegrzyn AH. J Allergy Clin Immunol Pract. 2022 Jan;10(1):312-314.e3. doi: 10.1016/j.jaip.2021.10.053. Epub 2021 Nov 2.

CD73(+) Epithelial Progenitor Cells That Contribute to Homeostasis and Renewal Are Depleted in Eosinophilic Esophagitis. Hara T, Kasagi Y, Wang J, Sasaki M, Aaron B, Karami A, Shimonosono M, Shimonosono R, Maekawa H, Dolinsky L, Wilkins B, Klein J, Wei J, Nunes K, Lynch K, Spergel JM, Hamilton KE, Ruffner MA, Karakasheva TA, Whelan KA, Nakagawa H, Muir AB. Cell Mol Gastroenterol Hepatol. 2022;13(5):1449-1467. doi: 10.1016/j.jcmgh.2022.01.018. Epub 2022 Jan 30.

Characterization of eosinophilic esophagitis variants by clinical, histological, and molecular analyses: A cross-sectional multi-center study. Greuter T, Straumann A, Fernandez-Marrero Y, Germic N, Hosseini A, Yousefi S, Simon D, Collins MH, Bussmann C, Chehade M, Dellon ES, Furuta GT, Gonsalves N, Hirano I, Moawad FJ, Biedermann L, Safroneeva E, Schoepfer AM, Simon HU. Allergy. 2022 Aug;77(8):2520-2533. doi: 10.1111/all.15233. Epub 2022 Feb 17. PMID: 35094416.

Eosinophilic esophagitis (EoE) is an allergic condition characterized by inflammation in the esophagus that causes a range of symptoms. Patients can have symptoms of esophageal dysfunction without meeting the classical diagnostic criteria. To characterize and classify the range of variants, an international team of researchers studied 69 patients with EoE variants. They identified and described three histological subtypes. Study authors concluded that EoE variants appear to be part of a disease spectrum, with classical EoE as the most common and apparent phenotype.

Close follow-up is associated with fewer stricture formation and results in earlier detection of histological relapse in the long-term management of eosinophilic esophagitis. Bon L, Safroneeva E, Bussmann C, Biedermann L, Schreiner P, Vavricka SR, Schoepfer AM, McCright-Gill T, Simon HU, Straumann A, Chehade M, Greuter T. United European Gastroenterol J. 2022 Apr;10(3):308-318. doi: 10.1002/ueg2.12216. Epub 2022 Apr 5. PMID: 35384368.

Eosinophilic esophagitis (EoE) is characterized by immune cells called eosinophils building up in the esophagus, which may cause polyps, tissue break down, inflammation, and ulcers. The follow-up schedule for maintenance treatment of EoE varies, possibly due to a lack of a recommended schedule. In this study, researchers analyzed "close follow-up" (less than 18 months between maintenance visits) and "non-close follow-up" (greater than or equal to 18 months between maintenance visits) for steroid treatment of EoE. They found that close follow-up was associated with less stricture formation (abnormal narrowing) and earlier detection of EoE relapse by histology. Authors note that regular assessment of EoE disease activity (every 12-18 months) may be beneficial in detecting relapsing disease as early as possible, therefore potentially minimizing the risk for EoE complications.

Defining the Patchy Landscape of Esophageal Eosinophilia in Children With Eosinophilic Esophagitis. Wechsler JB, Bolton SM, Gray E, Kim KY, Kagalwalla AF. Clin Gastroenterol Hepatol. 2022 Sep;20(9):1971-1976.e2. doi: 10.1016/j.cgh.2021.12.023. Epub 2021 Dec 23.

Determination of Biopsy Yield That Optimally Detects Eosinophilic Gastritis and/or Duodenitis in a Randomized Trial of Lirentelimab. Dellon ES, Gonsalves N, Rothenberg ME, Hirano I, Chehade M, Peterson KA, Falk GW, Murray JA, Gehman LT, Chang AT, Singh B, Rasmussen HS, Genta RM. Clin Gastroenterol Hepatol. 2022 Mar;20(3):535-545.e15. doi: 10.1016/j.cgh.2021.05.053. Epub 2021 Jun 2.

Development and Validation of Web-Based Tool to Predict Lamina Propria Fibrosis in Eosinophilic Esophagitis. Hiremath G, Sun L, Correa H, Acra S, Collins MH, Bonis P, Arva NC, Capocelli KE, Falk GW, King E, Gonsalves N, Gupta SK, Hirano I, Mukkada VA, Martin LJ, Putnam PE, Spergel JM, Wechsler JB, Yang GY, Aceves SS, Furuta GT, Rothenberg ME, Koyama T, Dellon ES. Am J Gastroenterol. 2022 Feb 1;117(2):272-279. doi: 10.14309/ajg.0000000000001587.

Development of a core outcome set for therapeutic studies in eosinophilic esophagitis (COREOS). COREOS Collaborators:, Ma C, Schoepfer AM, Dellon ES, Bredenoord AJ, Chehade M, Collins MH, Feagan BG, Furuta GT, Gupta SK, Hirano I, Jairath V, Katzka DA, Pai RK, Rothenberg ME, Straumann A, Aceves SS, Alexander JA, Arva NC, Atkins D, Biedermann L, Blanchard C, Cianferoni A, Ciriza de Los Rios C, Clayton F, Davis CM, de Bortoli N, Dias JA, Falk GW, Genta RM, Ghaffari G, Gonsalves N, Greuter T, Hopp R, Hsu Blatman KS, Jensen ET, Johnston D, Kagalwalla AF, Larsson HM, Leung J, Louis H, Masterson JC, Menard-Katcher C, Menard-Katcher PA, Moawad FJ, Muir AB, Mukkada VA, Penagini R, Pesek RD, Peterson K, Putnam PE, Ravelli A, Savarino EV, Schlag C, Schreiner P, Simon D, Smyrk TC, Spergel JM, Taft TH, Terreehorst I, Vanuytsel T, Venter C, Vieira MC, Vieth M, Vlieg-Boerstra B, von Arnim U, Walker MM, Wechsler JB, Woodland P, Woosley JT, Yang GY, Zevit N, Safroneeva E. J Allergy Clin Immunol. 2022 Feb;149(2):659-670. doi: 10.1016/j.jaci.2021.07.001. Epub 2021 Jul 6.

Diagnostic merits of the Eosinophilic Esophagitis Diagnostic Panel from a single esophageal biopsy. Min S, Shoda T, Wen T, Rothenberg ME. J Allergy Clin Immunol. 2022 Feb;149(2):782-787.e1. doi: 10.1016/j.jaci.2021.07.032. Epub 2021 Aug 8.

Eosinophil Peroxidase Staining Enhances the Diagnostic Utility of the Cytosponge in Eosinophilic Esophagitis. Masuda MY, Barshow SM, Garg S, Putikova A, LeSuer WE, Alexander JA, Katzka DA, Dellon ES, Kita H, Horsley-Silva JL, Doyle AD, Wright BL. Clin Transl Gastroenterol. 2022 Nov 1;13(11):e00534. doi: 10.14309/ctg.0000000000000534.

Eosinophilic Esophagitis Patients Are Not at Increased Risk of Severe COVID-19: A Report From a Global Registry. Zevit N, Chehade M, Leung J, Marderfeld L, Dellon ES. J Allergy Clin Immunol Pract. 2022 Jan;10(1):143-149.e9. doi: 10.1016/j.jaip.2021.10.019. Epub 2021 Oct 22.

Eosinophilic gastrointestinal diseases make a name for themselves: A new consensus statement with updated nomenclature. Wright BL, Schwartz JT, Ruffner MA, Furuta GT, Gonsalves N, Dellon ES, Aceves SS. J Allergy Clin Immunol. 2022 Aug;150(2):291-293. doi: 10.1016/j.jaci.2022.05.012. Epub 2022 May 29. PMID: 35649464; PMCID: PMC9378528.

Eosinophilic gastrointestinal diseases (EGIDs) are a group of chronic immune system disorders in which a type of white blood cell (eosinophils) build up in the gastrointestinal tract, causing inflammation or injury. Consensus recommendations have been developed for diagnosis of eosinophilic esophagitis (EoE), the most common EGID. However, there are currently no consensus guidelines for diagnosis of non-EoE EGIDs. Standardization of EGID terminology is one of the first priorities for developing these guidelines. In this study, a large group of researchers and clinicians aimed to reach international consensus for EGID nomenclature. The team used multiple rounds of surveys to develop a new tiered framework for EGID terms. Authors note that this revision of terms could advance both clinical care and research in EGIDs. Next steps include selection of specific disease markers and thresholds, definition of symptoms, exclusion of alternative diagnoses, and duration of disease.

Esophageal Manifestations of Dermatological Diseases, Diagnosis and Management. Arar AM, DeLay K, Leiman DA, Menard-Katcher P. Curr Treat Options Gastroenterol. 2022 Dec;20(4):513-528. doi: 10.1007/s11938-022-00399-6. Epub 2022 Oct 18.

Evaluating Eosinophilic Colitis as a Unique Disease using Colonic Molecular Profiles: A Multi-Site Study. Shoda T, Collins MH, Rochman M, Wen T, Caldwell JM, Mack LE, Osswald GA, Besse JA, Haberman Y, Aceves SS, Arva NC, Capocelli KE, Chehade M, Davis CM, Dellon ES, Falk GW, Gonsalves N, Gupta SK, Hirano I, Khoury P, Klion A, Menard-Katcher C, Leung J, Mukkada V, Putnam PE, Spergel JM, Wechsler JB, Yang GY, Furuta GT, Denson LA, Rothenberg ME; Consortium of Eosinophilic Gastrointestinal Diseases Researchers (CEGIR). Gastroenterology. 2022 Jan 24:S0016-5085(22)00038-5. doi: 10.1053/j.gastro.2022.01.022. Epub ahead of print. PMID: 35085569.

Eosinphilic colitis (EoC) has been a poorly understood condition with uncertainty whether it is a distinct disease or a manifestation of eosinophilic gastrointestinal disease or inflammatory bowel disease. Researchers from the Consortium of Eosinophilic Gastrointestinal Disease Researchers (CEGIR) seeking to better understand the condition analyzed samples from more than 60 people treated at multiple medical centers v. controls to compare this rare disease to other conditions. They identified and analyzed 987 differentially expressed genes, established EoC transcriptomic profiles, identified mechanistic pathways, and compared findings with related conditions. They concluded that EoC is a distinct disease, establishing a basis for improved diagnosis and treatment.

Harnessing artificial intelligence to infer novel spatial biomarkers for the diagnosis of eosinophilic esophagitis. Larey A, Aknin E, Daniel N, Osswald GA, Caldwell JM, Rochman M, Wasserman T, Collins MH, Arva NC, Yang GY, Rothenberg ME, Savir Y. Front Med (Lausanne). 2022 Oct 21;9:950728. doi: 10.3389/fmed.2022.950728. eCollection 2022.

Human Epidemiology and RespOnse to SARS-CoV-2 (HEROS): Objectives, Design and Enrollment Results of a 12-City Remote Observational Surveillance Study of Households with Children using Direct-to-Participant Methods. Fulkerson PC, Lussier SJ, Bendixsen CG, Castina SM, Gebretsadik T, Marlin JS, Russell PB, Seibold MA, Everman JL, Moore CM, Snyder BM, Thompson K, Tregoning GS, Wellford S, Arbes SJ, Bacharier LB, Calatroni A, Camargo CA, Dupont WD, Furuta GT, Gruchalla RS, Gupta RS, Hershey GK, Jackson DJ, Johnson CC, Kattan M, Liu AH, Murrison L, Oâ Connor GT, Phipatanakul W, Rivera-Spoljaric K, Rothenberg ME, Seroogy CM, Teach SJ, Zoratti EM, Togias A, Hartert TV. medRxiv. 2022 Jul 10:2022.07.09.22277457. doi: 10.1101/2022.07.09.22277457. Preprint.

Impressions and aspirations from the FDA GREAT VI Workshop on Eosinophilic Gastrointestinal Disorders Beyond Eosinophilic Esophagitis and Perspectives for Progress in the Field. Rothenberg ME, Hottinger SKB, Gonsalves N, Furuta GT, Collins MH, Talley NJ, Peterson K, Menard-Katcher C, Smith M, Hirano I, Genta RM, Chehade M, Gupta SK, Spergel JM, Aceves SS, Dellon ES. J Allergy Clin Immunol. 2022 Mar;149(3):844-853. doi: 10.1016/j.jaci.2021.12.768. Epub 2021 Dec 22.

International Consensus Recommendations for Eosinophilic Gastrointestinal Disease Nomenclature. Dellon ES, Gonsalves N, Abonia JP, Alexander JA, Arva NC, Atkins D, Attwood SE, Auth MKH, Bailey DD, Biederman L, Blanchard C, Bonis PA, Bose P, Bredenoord AJ, Chang JW, Chehade M, Collins MH, Di Lorenzo C, Dias JA, Dohil R, Dupont C, Falk GW, Ferreira CT, Fox AT, Genta RM, Greuter T, Gupta SK, Hirano I, Hiremath GS, Horsley-Silva JL, Ishihara S, Ishimura N, Jensen ET, Gutiérrez-Junquera C, Katzka DA, Khoury P, Kinoshita Y, Kliewer KL, Koletzko S, Leung J, Liacouras CA, Lucendo AJ, Martin LJ, McGowan EC, Menard-Katcher C, Metz DC, Miller TL, Moawad FJ, Muir AB, Mukkada VA, Murch S, Nhu QM, Nomura I, Nurko S, Ohtsuka Y, Oliva S, Orel R, Papadopoulou A, Patel DA, Pesek RD, Peterson KA, Philpott H, Putnam PE, Richter JE, Rosen R, Ruffner MA, Safroneeva E, Schreiner P, Schoepfer A, Schroeder SR, Shah N, Souza RF, Spechler SJ, Spergel JM, Straumann A, Talley NJ, Thapar N, Vandenplas Y, Venkatesh RD, Vieira MC, von Arnim U, Walker MM, Wechsler JB, Wershil BK, Wright BL, Yamada Y, Yang GY, Zevit N, Rothenberg ME, Furuta GT, Aceves SS. Clin Gastroenterol Hepatol. 2022 Feb 16:S1542-3565(22)00143-4. doi: 10.1016/j.cgh.2022.02.017. Online ahead of print.

Long-Lasting Dissociation of Esophageal Eosinophilia and Symptoms After Dilation in Adults With Eosinophilic Esophagitis. Safroneeva E, Pan Z, King E, Martin LJ, Collins MH, Yang GY, Capocelli KE, Arva NC, Abonia JP, Atkins D, Bonis PA, Dellon ES, Falk GW, Gonsalves N, Gupta SK, Hirano I, Leung J, Menard-Katcher PA, Mukkada VA, Schoepfer AM, Spergel JM, Wershil BK, Rothenberg ME, Aceves SS, Furuta GT; Consortium of Eosinophilic Gastrointestinal Disease Researchers. Clin Gastroenterol Hepatol. 2022 Apr;20(4):766-775.e4. doi: 10.1016/j.cgh.2021.05.049. Epub 2021 May 29.

Mast cell-pain connection in eosinophilic esophagitis. Zhang S, Shoda T, Aceves SS, Arva NC, Chehade M, Collins MH, Dellon ES, Falk GW, Gonsalves N, Gupta SK, Hirano I, Khoury P, Leung J, Spergel AKR, Spergel JM, Wechsler JB, Yang GY, Furuta GT, Rothenberg ME; Consortium of Eosinophilic Gastrointestinal Disease Researchers (CEGIR) Investigators Group. Allergy. 2022 Jun;77(6):1895-1899. doi: 10.1111/all.15260. Epub 2022 Mar 3.

Multiancestral polygenic risk score for pediatric asthma. Namjou B, Lape M, Malolepsza E, DeVore SB, Weirauch MT, Dikilitas O, Jarvik GP, Kiryluk K, Kullo IJ, Liu C, Luo Y, Satterfield BA, Smoller JW, Walunas TL, Connolly J, Sleiman P, Mersha TB, Mentch FD, Hakonarson H, Prows CA, Biagini JM, Khurana Hershey GK, Martin LJ, Kottyan L; eMERGE Network. J Allergy Clin Immunol. 2022 Nov;150(5):1086-1096. doi: 10.1016/j.jaci.2022.03.035. Epub 2022 May 18.

Posttreatment Gene Scores Support Histologic and Endoscopic Response Thresholds in Eosinophilic Esophagitis. Ruffner MA, Cotton CC, Dellon ES. Am J Gastroenterol. 2022 Sep 1;117(9):1519-1522. doi: 10.14309/ajg.0000000000001802. Epub 2022 Apr 26.

Prospective Endoscopic Activity Assessment for Eosinophilic Gastritis in a Multisite Cohort. Hirano I, Collins MH, King E, Sun Q, Chehade M, Abonia JP, Bonis PA, Capocelli KE, Dellon ES, Falk GW, Gonsalves N, Gupta SK, Leung J, Katzka D, Menard-Katcher P, Khoury P, Klion A, Mukkada VA, Peterson K, Rudman-Spergel AK, Spergel JA, Yang GY, Rothenberg ME, Aceves SS, Furuta GT. Am J Gastroenterol. 2022 Jan 20. doi: 10.14309/ajg.0000000000001625. Epub ahead of print. PMID: 35080202.

Eosinophilic gastritis (EG) is a chronic inflammatory disease of the stomach that occurs when certain white blood cells known as eosinophils gather in large numbers in the stomach, causing injury and irritation. In this study, researchers aimed to better understand the endoscopic manifestations of EG and develop a standardized instrument for investigations. Using data prospectively collected as part of CEGIR, the team evaluated endoscopic features of children and adults with EG recorded with the EG Endoscopic Reference System (EG-REFS). Researchers identified a strong correlation between EG-REFS scores and physician global assessment of endoscopy severity. EG-REFS severity was significantly correlated with active histology and a tendency for the gastric antrum (lower portion of the stomach). The authors note that further development of EG-REFS should improve its utility in clinical studies.

Proton Pump Inhibitors in Allergy: Benefits and Risks. Robinson LB, Ruffner MA. J Allergy Clin Immunol Pract. 2022 Dec;10(12):3117-3123. doi: 10.1016/j.jaip.2022.09.022. Epub 2022 Sep 23.

Provider Beliefs, Practices, and Perceived Barriers to Dietary Elimination Therapy in Eosinophilic Esophagitis. Chang JW, Kliewer K, Katzka DA, Peterson KA, Gonsalves N, Gupta SK, Furuta GT, Dellon ES. Am J Gastroenterol. 2022 Dec 1;117(12):2071-2074. doi: 10.14309/ajg.0000000000001988. Epub 2022 Sep 1. PMID: 36066475; PMCID: PMC9722505.

Eosinophilic esophagitis (EoE) is a disorder in which eosinophils (white blood cells of the immune system) build up in the esophagus (the tube that carries food from the mouth to the stomach), causing tissue damage. This immune response can occur as a reaction to certain foods. Although effective dietary treatments are often available, physicians tend to prefer medications. In this study, researchers assessed providers’ perceptions of EoE dietary therapy, including effectiveness, practice patterns, and barriers. The team collected this data through a web-based survey of providers. Results show that providers view diet as the least effective treatment for EoE. Barriers to treatment include the belief that patients are disinterested and unlikely to adhere. In addition, providers indicated that with less access to dietitians, nonacademic providers often manage diets without dietitian guidance. As patients are often highly accepting of diets and multiple treatment options for EoE, authors state that clinicians need evidence-based knowledge on EoE diets, access to dietitians, and awareness of patient preferences.

Refractory eosinophilic esophagitis: what to do when the patient has not responded to proton pump inhibitors, steroids and diet. Strauss AL, Falk GW. Curr Opin Gastroenterol. 2022 Jul 1;38(4):395-401. doi: 10.1097/MOG.0000000000000842.

Risk factors for SARS-CoV-2 infection and transmission in households with children with asthma and allergy: A prospective surveillance study. Seibold MA, Moore CM, Everman JL, Williams BJM, Nolin JD, Fairbanks-Mahnke A, Plender EG, Patel BB, Arbes SJ, Bacharier LB, Bendixsen CG, Calatroni A, Camargo CA Jr, Dupont WD, Furuta GT, Gebretsadik T, Gruchalla RS, Gupta RS, Khurana Hershey GK, Murrison LB, Jackson DJ, Johnson CC, Kattan M, Liu AH, Lussier SJ, O'Connor GT, Rivera-Spoljaric K, Phipatanakul W, Rothenberg ME, Seroogy CM, Teach SJ, Zoratti EM, Togias A, Fulkerson PC, Hartert TV; HEROS study team. J Allergy Clin Immunol. 2022 Aug;150(2):302-311. doi: 10.1016/j.jaci.2022.05.014. Epub 2022 Jun 1. PMID: 35660376; PMCID: PMC9155183.

Children and people with asthma or other allergic diseases are typically known as high-risk groups for many respiratory viruses. However, it is currently unknown whether these groups are at increased risk for severe acute respiratory syndrome virus 2 (SARS-CoV-2) infection. In this study, researchers aimed to determine the incidence of SARS-CoV-2 infection in households with children, as well as whether self-reported asthma or other allergic diseases are associated with infection and household transmission. Participants included allergic disease patients from the Consortium of Eosinophilic Gastrointestinal Disease Researchers (CEGIR), which provided an accessible cohort for the study. For six months, the team collected biweekly nasal swabs and weekly surveys to calculate the probabilities of infection and transmission. Researchers then used regression analyses to determine associated risk factors. Results suggest that asthma does not increase the risk of SARS-CoV-2 infection. Food allergy was associated with lower infection risk, while body mass index was associated with increased infection risk. Authors note that understanding how these factors modify infection risk may offer new avenues for preventing infection.

Scientific journey to the first FDA-approved drug for eosinophilic esophagitis. Rothenberg ME. J Allergy Clin Immunol. 2022 Dec;150(6):1325-1332. doi: 10.1016/j.jaci.2022.09.027. Epub 2022 Oct 6.

Should We Pretreat Before We Go Nuts? Antihistamines Modestly Reduce the Side Effects of Peanut Oral Immunotherapy. Wright BL. J Allergy Clin Immunol Pract. 2022 Sep;10(9):2395-2396. doi: 10.1016/j.jaip.2022.06.015.

What patients with eosinophilic esophagitis may not share with their providers: a qualitative assessment of online health communities. Chang JW, Chen VL, Rubenstein JH, Dellon ES, Wallner LP, De Vries R. Dis Esophagus. 2022 Jun 15;35(6):doab073. doi: 10.1093/dote/doab073. PMID: 34718475.

Eosinophilic esophagitis (EoE) is an allergic inflammatory disease that damages the esophagus. Little is known about how patients with EoE experience their symptoms, receive care, and cope with their disease. Often, patients seek peer support from online communities. As an unfiltered source of patient perspectives, these communities can provide insights on unmet needs and barriers to care. In this study, researchers performed a qualitative analysis of electronic health forums to characterize patient-to-patient conversations about EoE symptoms and the experience of disease. The team analyzed a random sample of conversation threads from three publicly accessible electronic health forums hosting EoE communities. Results showed that patients with EoE interpret their disease as sporadic events and lack reliable sources of knowledge, which may influence how they prioritize treatment. Authors note that providers should equip themselves with evidence-based knowledge, engage in shared decision-making, and look outside of clinical settings in order to recognize barriers to disease management.

A Gut-Wrenching Case of Hypereosinophilia. Melethil S, Abonia JP. J Allergy Clin Immunol Pract. 2021 Sep;9(9):3524-3525. doi: 10.1016/j.jaip.2021.05.039. PMID: 34507713.

In a case study of hypereosinophilia, an allergic inflammatory condition in which white blood cells called eosinophils are at high levels in the body, a pediatric patient had recurrent gastrointestinal symptoms and histology showing elevated eosinophils in biopsy specimens. After excluding secondary causes of gastrointestinal eosinophilia, the clinicians diagnosed the patient with eosinophilic gastroenteritis (EGE). Eosinophilic gastritis (EG) and EGE are a heterogeneous group of rare disorders due to selective eosinophilic infiltration causing inflammation in the stomach and small intestine, in the absence of other secondary causes of eosinophilia. The exact incidence is unknown but is more commonly diagnosed in children younger than 5 years. In adults, the peak age of diagnosis is in the third decade of life. Authors say this case exemplifies two key points for healthcare providers: 1) Refer patients presenting with peripheral eosinophilia and recurrent or persistent gastrointestinal (GI) symptoms for evaluation for an intestinal biopsy and 2) Recognize that eosinophilic gastrointestinal diseases can be diagnosed only after other secondary causes of eosinophilia like parasitic infections or drug-induced causes are ruled out.

A Single-Food Milk Elimination Diet Is Effective for Treatment of Eosinophilic Esophagitis in Children. Wechsler JB, Schwartz S, Arva NC, Kim KA, Chen L, Makhija M, Amsden K, Keeley K, Mohammed S, Dellon ES, Kagalwalla AF. Clin Gastroenterol Hepatol. 2021 Apr 3:S1542-3565(21)00384-0. doi: 10.1016/j.cgh.2021.03.049. Online ahead of print.

Comorbid Diagnosis of Eosinophilic Esophagitis and Inflammatory Bowel Disease in the Pediatric Population. Moore H, Wechsler J, Frost C, Whiteside E, Baldassano R, Markowitz J, Muir AB. J Pediatr Gastroenterol Nutr. 2021 Mar 1;72(3):398-403. doi: 10.1097/MPG.0000000000003002.

Developing a standardized approach for assessing mast cells and eosinophils on tissue biopsies: A Work Group Report of the AAAAI Allergic Skin Diseases Committee. Zimmermann N, Abonia JP, Dreskin SC, Akin C, Bolton S, Happel CS, Geller M, Larenas-Linnemann D, Nanda A, Peterson K, Wasan A, Wechsler J, Zhang S, Bernstein JA. J Allergy Clin Immunol. 2021 Oct;148(4):964-983. doi: 10.1016/j.jaci.2021.06.030. Epub 2021 Aug 9. PMID: 34384610.

In human tissue biopsies, mast cells and eosinophils are commonly found. However, for several clinical conditions, there are knowledge gaps in determining diagnostic thresholds and how samples are processed, interpreted, and reported. These discrepancies can delay the correct diagnosis of a patient’s condition. A work group of pathology, allergy, dermatology, hematology/oncology, and gastroenterology stakeholders assembled to address this need. Together, the group developed a standardized approach for assessing mast cells and eosinophils in skin, gastrointestinal, and bone marrow pathologic specimens for the benefit of clinical practice and patients.

Diagnosis of Pediatric Non-Esophageal Eosinophilic Gastrointestinal Disorders by Eosinophil Peroxidase Immunohistochemistry. Hasan SH, Taylor S, Garg S, Buras MR, Doyle AD, Bauer CS, Wright BL, Schroeder S. Pediatr Dev Pathol. 2021 Nov-Dec;24(6):513-522. doi: 10.1177/10935266211024552. Epub 2021 Jun 28.

Distance to pediatric gastroenterology providers is associated with decreased diagnosis of eosinophilic esophagitis in rural populations. McGowan EC, Keller JP, Muir AB, Dellon ES, Peng R, Keet CA, Jensen ET. J Allergy Clin Immunol Pract. 2021 Dec;9(12):4489-4492.e2. doi: 10.1016/j.jaip.2021.08.034. Epub 2021 Sep 14. PMID: 34534720; PMCID: PMC8671202.

Eosinophilic esophagitis (EoE) is characterized by immune cells called eosinophils building up in the esophagus, which may cause polyps, tissue break down, inflammation, and ulcers. In this cross-sectional study, researchers examined data from children enrolled in Medicaid 2012. They found that the apparent lower prevalence of eosinophilic esophagitis in rural communities was attenuated when adjusting for distance to provider. These results suggest that diagnostic disparities likely exist for eosinophilic esophagitis among children residing in rural areas.

Do rural health disparities affect prevalence data in pediatric eosinophilic esophagitis?. Sabet C, Klion AD, Bailey D, Jensen E, Chehade M, Abonia JP, Rothenberg ME, Furuta GT, Muir AB; CEGIR Investigator Group. J Allergy Clin Immunol Pract. 2021 Jun;9(6):2549-2551. doi: 10.1016/j.jaip.2021.03.027.

Early life factors are associated with risk for eosinophilic esophagitis diagnosed in adulthood. Dellon ES, Shaheen O, Koutlas NT, Chang AO, Martin LJ, Rothenberg ME, Jensen ET. Dis Esophagus. 2021 Feb 10;34(2):doaa074. doi: 10.1093/dote/doaa074.

Effect of topical swallowed steroids on the bacterial and fungal esophageal microbiota in eosinophilic esophagitis. Benitez AJ, Tanes C, Mattei L, Hofstaedter CE, Kim DK, Gross J, Ruffner MA, Albenberg L, Spergel J, Bittinger K, Muir AB. Allergy. 2021 May;76(5):1549-1552. doi: 10.1111/all.14602. Epub 2020 Oct 19.

Eosinophil Knockout Humans: Uncovering the Role of Eosinophils Through Eosinophil-Directed Biological Therapies. Jacobsen EA, Jackson DJ, Heffler E, Mathur SK, Bredenoord AJ, Pavord ID, Akuthota P, Roufosse F, Rothenberg ME. Annu Rev Immunol. 2021 Apr 26;39:719-757. doi: 10.1146/annurev-immunol-093019-125918. Epub 2021 Mar 1.

Eosinophilic Esophagitis: A Review. Muir A, Falk GW. JAMA. 2021 Oct 5;326(13):1310-1318. doi: 10.1001/jama.2021.14920.

Researchers affiliated with the Consortium of Eosinophilic Gastrointestinal Disease Researchers (CEGIR) have published a new review paper examining eosinophilic esophagitis (EoE), an allergic inflammatory disease. EoE is characterized by elevated eosinophils (a type of disease-fighting white blood cell) in the esophagus (the tube connecting the mouth to the stomach). It affects an estimated 34.4/100,000 people in Europe and North America, including both children and adults. To diagnose the disease and evaluate treatment efficacy, a doctor inserts a thin, flexible tube with a light and camera at the end through a patient’s mouth, into the stomach, and sometimes into the upper intestine and collects tissue samples. In this paper, researchers discuss symptoms of the disease along with genetic and environmental factors associated with it. They also examine several current therapies, including proton pump inhibitors, topical steroid preparations, dietary therapy, and endoscopic dilation, and summarize recent systematic reviews of therapy trials.

Eosinophilic esophagitis may persist after discontinuation of oral immunotherapy. Hamant L, Freeman C, Garg S, Wright BL, Schroeder S. Ann Allergy Asthma Immunol. 2021 Mar;126(3):299-302. doi: 10.1016/j.anai.2020.12.007. Epub 2020 Dec 17.

How to approach adult patients with asymptomatic esophageal eosinophilia. Schreiner P, Biedermann L, Greuter T, Wright BL, Straumann A. Dis Esophagus. 2021 Jan 11;34(1):doaa105. doi: 10.1093/dote/doaa105.

Loss of Endothelial TSPAN12 Promotes Fibrostenotic Eosinophilic Esophagitis via Endothelial Cell-Fibroblast Crosstalk. Shoda T, Wen T, Caldwell JM, Ben-Baruch Morgenstern N, Osswald GA, Rochman M, Mack LE, Felton JM, Abonia JP, Arva NC, Atkins D, Bonis PA, Capocelli KE, Collins MH, Dellon ES, Falk GW, Gonsalves N, Gupta SK, Hirano I, Leung J, Menard-Katcher PA, Mukkada VA, Putnam PE, Rudman Spergel AK, Spergel JM, Wechsler JB, Yang GY, Aceves SS, Furuta GT, Rothenberg ME; Consortium of Eosinophilic Gastrointestinal Disease Researchers (CEGIR) Investigators Group. Gastroenterology. 2022 Feb;162(2):439-453. doi: 10.1053/j.gastro.2021.10.016. Epub 2021 Oct 21. PMID: 34687736; PMCID: PMC8792211.

Eosinophilic esophagitis (EoE) is a chronic, antigen-mediated immunologic disease that can progress to fibrostenosis, but the molecular pathogenesis of fibrostenotic EoE is not well understood. This study found that endothelial TSPAN12 contributes to fibrostenotic EoE and is the first molecular correlate of esophageal diameter. These findings provide new insight into previously underrecognized roles of the endothelium in disease pathogenesis. Anti–IL-13 therapy may improve fibrostenotic EoE through normalizing TSPAN12 levels.

Motivations, Barriers, and Outcomes of Patient-Reported Shared Decision Making in Eosinophilic Esophagitis. Chang JW, Rubenstein JH, Mellinger JL, Kodroff E, Strobel MJ, Scott M, Mack D, Book W, Sable K, Kyle S, Paliana A, Dellon ES. Dig Dis Sci. 2021 Jun;66(6):1808-1817. doi: 10.1007/s10620-020-06438-5. Epub 2020 Jul 3.

Moving FORWARD Toward Racial Equity in Food Allergy. Davis CM. J Allergy Clin Immunol Pract. 2021 Jul;9(7):2874-2875. doi: 10.1016/j.jaip.2021.04.066.

Noninvasive biomarkers identify eosinophilic esophagitis: A prospective longitudinal study in children. Wechsler JB, Ackerman SJ, Chehade M, Amsden K, Riffle ME, Wang MY, Du J, Kleinjan ML, Alumkal P, Gray E, Kim KA, Wershil BK, Kagalwalla AF. Allergy. 2021 Apr 27. doi: 10.1111/all.14874. Online ahead of print.

Patients with eosinophilic gastrointestinal disorders have lower in-hospital mortality rates related to COVID-19. Qeadan F, Chehade M, Tingey B, Egbert J, Dellon ES, Peterson KA. J Allergy Clin Immunol Pract. 2021 Dec;9(12):4473-4476.e4. doi: 10.1016/j.jaip.2021.09.022. Epub 2021 Sep 23. PMID: 34563741; PMCID: PMC8459462.

Little is known about eosinophilic gastrointestinal disease (EGID) and COVID-19 outcomes. By reducing viral entry into cells, the mucosal responses of patients with EGID may protect against severe effects of COVID-19. In this study, researchers compared hospitalization rates, ventilator dependence, and death between patients with and without EGID. When compared with non–EGID COVID-19 positive patients, they found that EGID COVID-19 positive individuals stayed longer in the hospital, yet had lower rates of inpatient mortality. This analysis suggests that EGID may provide a protective effect against severe COVID-19 outcomes. In future studies, researchers plan to further explore the protective role of reduced expression of ACE2/TMPRSS2 and the eosinophilic disease itself in COVID-19 mortality.

RNA sequencing identifies global transcriptional changes in peripheral CD4(+) cells during active oesophagitis and following epicutaneous immunotherapy in eosinophilic oesophagitis. Ruffner MA, Zhang Z, Maurer K, Muir AB, Cianferoni A, Sullivan KE, Spergel JM. Clin Transl Immunology. 2021 Jul 22;10(7):e1314. doi: 10.1002/cti2.1314. eCollection 2021.

Treatment of Eosinophilic Esophagitis: Diet or Medication?. Chehade M, Aceves SS. J Allergy Clin Immunol Pract. 2021 Sep;9(9):3249-3256. doi: 10.1016/j.jaip.2021.07.029. PMID: 34507706.

Eosinophilic esophagitis (EoE) is an allergic inflammatory disease characterized by elevated eosinophils (white blood cells) in the esophagus (the tube connecting the mouth to the stomach). The prevalence of EoE is increasing in children and adults. As a chronic condition currently without a cure, EoE must be carefully managed to prevent complications, such as food impactions in the esophagus or narrowing of the lumen. In this paper, researchers discuss the current approaches for dietary and pharmacologic management of EoE and the need for future clinical trials to help tailor therapies to individual patients with this chronic disease.

Type 2 Immunity and Age Modify Gene Expression of Coronavirus-induced Disease 2019 Receptors in Eosinophilic Gastrointestinal Disorders. Chiang AWT, Duong LD, Shoda T, Nhu QM, Ruffner M, Hara T, Aaron B, Joplin E, Manresa MC, Abonia JP, Dellon ES, Hirano I, Gonsalves N, Gupta SK, Furuta GT, Rothenberg ME, Lewis NE, Muir AB, Aceves SS; CEGIR Investigator Group. J Pediatr Gastroenterol Nutr. 2021 May 1;72(5):718-722. doi: 10.1097/MPG.0000000000003032.

Eosinophilic gastrointestinal disorders are inflammatory conditions caused by chronic type 2 (T2) inflammation. In this study, researchers sought to better understand the impact of this T2 inflammation on susceptibility to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus that causes coronavirus-induced disease 2019 (COVID-19). Researchers analyzed gene expression data in pediatric eosinophilic esophagitis, eosinophilic gastritis, and in normal adults using publicly available datasets. They concluded that eosinophilic gastrointestinal diseases are not risk factors for COVID-19. and that T2 immunity & pediatric age could be protective for SARS-CoV-2 infection in the GI tract.

Unsedated transnasal esophagoscopy with virtual reality distraction enables earlier monitoring of dietary therapy in eosinophilic esophagitis. Friedlander JA, Fleischer DM, Black JO, Levy M, Rothenberg ME, Smith C, Nguyen N, Pan Z, Furuta GT. J Allergy Clin Immunol Pract. 2021 Sep;9(9):3494-3496. doi: 10.1016/j.jaip.2021.06.030. Epub 2021 Jul 2. PMID: 34224927; PMCID: PMC8459391.

Eosinophilic esophagitis is a chronic, inflammatory disease of the esophagus often treated with an elimination diet, where patients avoid specific foods that are triggering the disease. The current standard of care for diagnosis and symptom monitoring requires repeated sedated endoscopy procedures over time. After the initial diagnostic endoscopy, many assessments may be needed to establish the correct diet. For patients, these repeated diagnostic procedures raise issues of risk, cost, and lost time from school and/or work. They also extend the time patients must wait to reintroduce foods. In this study, researchers seeking to address these concerns tested the use of an emerging technology, less invasive monitoring approach compared with standard endoscopy—unsedated transnasal esophagoscopy (TN-Eso) with virtual reality distraction. Although this was a pilot study involving only five patients, the researchers found that TN-Eso was well-tolerated and preferred by patients and families. Tests using the new technology detected the return of esophagitis as soon as two weeks after single-food exposure, suggesting that the timing of food reintroductions could be shortened by 50% to 75%, compared with the traditional endoscopies (which typically occur at 12-week intervals). Study authors say these findings support a shortened challenge period with the use of TN-Eso, which may lead to faster identification of a suitable treatment. The study also demonstrates that food allergen-induced eosinophilic esophagitis occurs within two weeks following exposure to the triggering food.

Variability in Practices of Compounding Budesonide for Eosinophilic Esophagitis. Joshi S, Rubenstein JH, Dellon ES, Worthing N, Stefanadis Z, Chang JW. Am J Gastroenterol. 2021 Jun 1;116(6):1336-1338. doi: 10.14309/ajg.0000000000001170.

A novel approach to conducting clinical trials in the community setting: utilizing patient-driven platforms and social media to drive web-based patient recruitment. Applequist J, Burroughs C, Ramirez A Jr, Merkel PA, Rothenberg ME, Trapnell B, Desnick RJ, Sahin M, Krischer JP. BMC Med Res Methodol. 2020 Mar 13;20(1):58. doi: 10.1186/s12874-020-00926-y.

AGA Institute and the Joint Task Force on Allergy-Immunology Practice Parameters Clinical Guidelines for the Management of Eosinophilic Esophagitis. Hirano I, Chan ES, Rank MA, Sharaf RN, Stollman NH, Stukus DR, Wang K, Greenhawt M, Falck-Ytter YT; AGA Institute Clinical Guidelines Committee; Joint Task Force on Allergy-Immunology Practice Parameters. Gastroenterology. 2020 May;158(6):1776-1786. doi: 10.1053/j.gastro.2020.02.038.

AGA institute and the joint task force on allergy-immunology practice parameters clinical guidelines for the management of eosinophilic esophagitis. Hirano I, Chan ES, Rank MA, Sharaf RN, Stollman NH, Stukus DR, Wang K, Greenhawt M, Falck-Ytter YT; AGA Institute Clinical Guidelines Committee; Joint Task Force on Allergy-Immunology Practice Parameters. Ann Allergy Asthma Immunol. 2020 May;124(5):416-423. doi: 10.1016/j.anai.2020.03.020.

Advancing patient care through the Consortium of Eosinophilic Gastrointestinal Disease Researchers (CEGIR). Aceves S, Collins MH, Rothenberg ME, Furuta GT, Gonsalves N; Consortium of Eosinophilic Gastrointestinal Disease Researchers (CEGIR). J Allergy Clin Immunol. 2020 Jan;145(1):28-37. doi: 10.1016/j.jaci.2019.11.012. Epub 2019 Nov 20.

Antifibrotic Effects of the Thiazolidinediones in Eosinophilic Esophagitis Pathologic Remodeling: A Preclinical Evaluation. Nhu QM, Hsieh L, Dohil L, Dohil R, Newbury RO, Kurten R, Moawad FJ, Aceves SS. Clin Transl Gastroenterol. 2020 Apr;11(4):e00164. doi: 10.14309/ctg.0000000000000164.

Approaches and Challenges to Management of Pediatric and Adult Patients With Eosinophilic Esophagitis. Hirano I, Furuta GT. Gastroenterology. 2020 Mar;158(4):840-851. doi: 10.1053/j.gastro.2019.09.052. Epub 2019 Dec 10.

Association Between Endoscopic and Histologic Findings in a Multicenter Retrospective Cohort of Patients with Non-esophageal Eosinophilic Gastrointestinal Disorders. Pesek RD, Reed CC, Collins MH, Muir AB, Fulkerson PC, Menard-Katcher C, Falk GW, Kuhl J, Magier AZ, Ahmed FN, Demarshall M, Gupta A, Gross J, Ashorobi T, Carpenter CL, Krischer JP, Gonsalves N, Hirano I, Spergel JM, Gupta SK, Furuta GT, Rothenberg ME, Dellon ES; Consortium of Eosinophilic Gastrointestinal Disease Researchers (CEGIR). Dig Dis Sci. 2020 Jul;65(7):2024-2035. doi: 10.1007/s10620-019-05961-4. Epub 2019 Nov 26.

Effectiveness and Safety of High- vs Low-Dose Swallowed Topical Steroids for Maintenance Treatment of Eosinophilic Esophagitis: A Multicenter Observational Study. Greuter T, Godat A, Ringel A, Almonte HS, Schupack D, Mendoza G, McCright-Gill T, Dellon ES, Hirano I, Alexander J, Chehade M, Safroneeva E, Bussmann C, Biedermann L, Schreiner P, Schoepfer AM, Straumann A, Katzka DA. Clin Gastroenterol Hepatol. 2020 Aug 13:S1542-3565(20)31136-8. doi: 10.1016/j.cgh.2020.08.027. Online ahead of print.

Elimination diets for eosinophilic esophagitis: making the best choice. Chehade M, Brown S. Expert Rev Clin Immunol. 2020 Jul;16(7):679-687. doi: 10.1080/1744666X.2020.1801419. Epub 2020 Aug 4.

Emerging therapies for eosinophilic esophagitis. Greuter T, Hirano I, Dellon ES. J Allergy Clin Immunol. 2020 Jan;145(1):38-45. doi: 10.1016/j.jaci.2019.10.027. Epub 2019 Nov 6.

EoE disease monitoring: Where we are and where we are going. Godwin B, Wilkins B, Muir AB. Ann Allergy Asthma Immunol. 2020 Mar;124(3):240-247. doi: 10.1016/j.anai.2019.12.004. Epub 2019 Dec 9.

Eosinophilic Esophagitis: Existing and Upcoming Therapies in an Age of Emerging Molecular and Personalized Medicine. Slack IF, Schwartz JT, Mukkada VA, Hottinger S, Abonia JP. Curr Allergy Asthma Rep. 2020 Jun 6;20(8):30. doi: 10.1007/s11882-020-00928-2.

Eosinophilic gastrointestinal disease below the belt. Pesek RD, Rothenberg ME. J Allergy Clin Immunol. 2020 Jan;145(1):87-89.e1. doi: 10.1016/j.jaci.2019.10.013. Epub 2019 Oct 24.

Eosinophils in Eosinophilic Esophagitis: The Road to Fibrostenosis is Paved With Good Intentions. Doyle AD, Masuda MY, Kita H, Wright BL. Front Immunol. 2020 Dec 1;11:603295. doi: 10.3389/fimmu.2020.603295. eCollection 2020.

Esophageal type 2 cytokine expression heterogeneity in eosinophilic esophagitis in a multisite cohort. Dunn JLM, Shoda T, Caldwell JM, Wen T, Aceves SS, Collins MH, Dellon ES, Falk GW, Leung J, Martin LJ, Menard-Katcher P, Rudman-Spergel AK, Spergel JM, Wechsler JB, Yang GY, Furuta GT, Rothenberg ME; Consortium of Eosinophilic Gastrointestinal Disease Researchers (CEGIR). J Allergy Clin Immunol. 2020 Jun;145(6):1629-1640.e4. doi: 10.1016/j.jaci.2020.01.051. Epub 2020 Mar 19.

High Patient Disease Burden in a Cross-sectional, Multicenter Contact Registry Study of Eosinophilic Gastrointestinal Diseases. Jensen ET, Aceves SS, Bonis PA, Bray K, Book W, Chehade M, Collins MH, Dellon ES, Falk GW, Gonsalves N, Gupta SK, Hirano I, Katzka DA, Kyle S, Mack D, Kodroff E, Leung J, Mukkada VA, Scott M, Paliana A, Sable K, Spergel JM, Strobel MJ, Krischer J, Rothenberg ME, Abonia P; CEGIR Investigator group. J Pediatr Gastroenterol Nutr. 2020 Oct;71(4):524-529. doi: 10.1097/MPG.0000000000002817.

Mast Cell Infiltration Is Associated With Persistent Symptoms and Endoscopic Abnormalities Despite Resolution of Eosinophilia in Pediatric Eosinophilic Esophagitis. Bolton SM, Kagalwalla AF, Arva NC, Wang MY, Amsden K, Melin-Aldana H, Dellon ES, Bryce PJ, Wershil BK, Wechsler JB. Am J Gastroenterol. 2020 Feb;115(2):224-233. doi: 10.14309/ajg.0000000000000474.

Medical algorithm: Diagnosis and treatment of eosinophilic esophagitis in adults. Greuter T, Straumann A. Allergy. 2020 Mar;75(3):727-730. doi: 10.1111/all.14112. Epub 2019 Dec 5.

Medical algorithm: Diagnosis and treatment of eosinophilic esophagitis in children. Spergel JM, Brown-Whitehorn TA, Muir A, Liacouras CA. Allergy. 2020 Jun;75(6):1522-1524. doi: 10.1111/all.14188. Epub 2020 Jan 31.

Modeling Epithelial Homeostasis and Reactive Epithelial Changes in Human and Murine Three-Dimensional Esophageal Organoids. Nakagawa H, Kasagi Y, Karakasheva TA, Hara T, Aaron B, Shimonosono M, Kijima T, Giroux V, Bailey D, Wilkins B, Abrams JA, Falk GW, Aceves SS, Spergel JM, Hamilton KE, Whelan KA, Muir AB. Curr Protoc Stem Cell Biol. 2020 Mar;52(1):e106. doi: 10.1002/cpsc.106.

Molecular, endoscopic, histologic, and circulating biomarker-based diagnosis of eosinophilic gastritis: Multi-site study. Shoda T, Wen T, Caldwell JM, Collins MH, Besse JA, Osswald GA, Abonia JP, Arva NC, Atkins D, Capocelli KE, Dellon ES, Falk GW, Gonsalves N, Gupta SK, Hirano I, Mukkada VA, Putnam PE, Sheridan RM, Rudman Spergel AK, Spergel JM, Wechsler JB, Yang GY, Aceves SS, Furuta GT, Rothenberg ME; Consortium of Eosinophilic Gastrointestinal Disease Researchers (CEGIR). J Allergy Clin Immunol. 2020 Jan;145(1):255-269. doi: 10.1016/j.jaci.2019.11.007. Epub 2019 Nov 16.

Persistent Basal Cell Hyperplasia Is Associated With Clinical and Endoscopic Findings in Patients With Histologically Inactive Eosinophilic Esophagitis. Whelan KA, Godwin BC, Wilkins B, Elci OU, Benitez A, DeMarshall M, Sharma M, Gross J, Klein-Szanto AJ, Liacouras CA, Dellon ES, Spergel JM, Falk GW, Muir AB, Nakagawa H. Clin Gastroenterol Hepatol. 2020 Jun;18(7):1475-1482.e1. doi: 10.1016/j.cgh.2019.08.055. Epub 2019 Sep 6.

Technical Review on the Management of Eosinophilic Esophagitis: A Report From the AGA Institute and the Joint Task Force on Allergy-Immunology Practice Parameters. Rank MA, Sharaf RN, Furuta GT, Aceves SS, Greenhawt M, Spergel JM, Falck-Ytter YT, Dellon ES; AGA Institute. Electronic address: clinicalpractice@gastro.org; Joint Task Force on Allergy-Immunology Practice Parameters collaborators. Electronic address: drdanawallace@gmail.com; AGA Institute; Joint Task Force on Allergy-Immunology Practice Parameters collaborators. Gastroenterology. 2020 May;158(6):1789-1810.e15. doi: 10.1053/j.gastro.2020.02.039.

Technical review on the management of eosinophilic esophagitis: a report from the AGA institute and the joint task force on allergy-immunology practice parameters. Rank MA, Sharaf RN, Furuta GT, Aceves SS, Greenhawt M, Spergel JM, Falck-Ytter YT, Dellon ES; AGA Institute Electronic address: clinicalpractice@gastroorg; Joint Task Force on Allergy-Immunology Practice Parameters collaborators Electronic address: drdanawallace@gmailcom; AGA Institute; Joint Task Force on Allergy-Immunology Practice Parameters collaborators. Ann Allergy Asthma Immunol. 2020 May;124(5):424-440.e17. doi: 10.1016/j.anai.2020.03.021.

The genetic etiology of eosinophilic esophagitis. Kottyan LC, Parameswaran S, Weirauch MT, Rothenberg ME, Martin LJ. J Allergy Clin Immunol. 2020 Jan;145(1):9-15. doi: 10.1016/j.jaci.2019.11.013.

The potential for malignancy from atopic disorders and allergic inflammation: A systematic review and meta-analysis. Muir AB, Whelan KA, Dougherty MK, Aaron B, Navarre B, Aceves SS, Dellon ES, Jensen ET. Clin Exp Allergy. 2020 Feb;50(2):147-159. doi: 10.1111/cea.13537. Epub 2019 Dec 20.

The role of eosinophils in immunotherapy. Cafone J, Ruffner MA, Spergel JM. Curr Opin Allergy Clin Immunol. 2020 Apr;20(2):329. doi: 10.1097/ACI.0000000000000617.

Unanswered questions in eosinophilic esophagitis. Nhu QM, Aceves SS. Ann Allergy Asthma Immunol. 2020 Mar;124(3):227-228. doi: 10.1016/j.anai.2019.12.003. Epub 2019 Dec 9.

Validation of self-reported diagnosis of eosinophilic gastrointestinal disorders patients enrolled in the CEGIR contact registry. Hiremath G, Krischer JP, Rothenberg ME, Dellon ES. Clin Res Hepatol Gastroenterol. 2020 Nov 5:101555. doi: 10.1016/j.clinre.2020.10.001. Online ahead of print.

A Comparative Analysis of Eating Behavior of School-Aged Children with Eosinophilic Esophagitis and Their Caregivers' Quality of Life: Perspectives of Caregivers. Hiremath G, Rogers E, Kennedy E, Hemler J, Acra S. Dysphagia. 2019 Aug;34(4):567-574. doi: 10.1007/s00455-019-09984-x. Epub 2019 Feb 2.

A Conceptual Approach to Understanding Treatment Response in Eosinophilic Esophagitis. Dellon ES, Gupta SK. Clin Gastroenterol Hepatol. 2019 Oct;17(11):2149-2160. doi: 10.1016/j.cgh.2019.01.030. Epub 2019 Jan 30.

Climbing New Mountains: How Antibodies Blocking α4β7 Integrins Tamed Eosinophilic Inflammation of the Intestinal Tract. Olbrich CL, Simerly L, de Zoeten EF, Furuta GT, Spencer LA. Dig Dis Sci. 2019 Aug;64(8):2068-2071. doi: 10.1007/s10620-019-05706-3.

Consortium of Eosinophilic Gastrointestinal Disease Researchers: Advancing the Field of Eosinophilic GI Disorders Through Collaboration. Gupta SK, Falk GW, Aceves SS, Chehade M, Collins MH, Dellon ES, Gonsalves N, Hirano I, Mukkuda VA, Peterson KA, Spergel J, Yang GY, Furuta GT, Rothenberg ME; Consortium of Eosinophilic Gastrointestinal Disease Researchers (CEGIR). Gastroenterology. 2019 Mar;156(4):838-842. doi: 10.1053/j.gastro.2018.10.057. Epub 2018 Nov 17.

Cost-effective care in eosinophilic esophagitis. Dellon ES. Ann Allergy Asthma Immunol. 2019 Aug;123(2):166-172. doi: 10.1016/j.anai.2019.04.010. Epub 2019 Apr 19.

Editorial: the evolving epidemiology of EoE-up, up, and away?. Dellon ES. Aliment Pharmacol Ther. 2019 Jun;49(11):1448-1449. doi: 10.1111/apt.15252.

Eosinophil progenitor levels correlate with tissue pathology in pediatric eosinophilic esophagitis. Schwartz JT, Morris DW, Collins MH, Rothenberg ME, Fulkerson PC. J Allergy Clin Immunol. 2019 Mar;143(3):1221-1224.e3. doi: 10.1016/j.jaci.2018.10.036. Epub 2018 Nov 9.

Eosinophilic esophagitis during sublingual and oral allergen immunotherapy. Cafone J, Capucilli P, Hill DA, Spergel JM. Curr Opin Allergy Clin Immunol. 2019 Aug;19(4):350-357. doi: 10.1097/ACI.0000000000000537.

Eosinophilic esophagitis: early diagnosis is the key. Muir AB, Brown-Whitehorn T, Godwin B, Cianferoni A. Clin Exp Gastroenterol. 2019 Aug 15;12:391-399. doi: 10.2147/CEG.S175061. eCollection 2019.

Epithelial HIF-1α/claudin-1 axis regulates barrier dysfunction in eosinophilic esophagitis. Masterson JC, Biette KA, Hammer JA, Nguyen N, Capocelli KE, Saeedi BJ, Harris RF, Fernando SD, Hosford LB, Kelly CJ, Campbell EL, Ehrentraut SF, Ahmed FN, Nakagawa H, Lee JJ, McNamee EN, Glover LE, Colgan SP, Furuta GT. J Clin Invest. 2019 Jul 2;129(8):3224-3235. doi: 10.1172/JCI126744. eCollection 2019 Jul 2.

Epithelial-stromal crosstalk and fibrosis in eosinophilic esophagitis. Muir AB, Wang JX, Nakagawa H. J Gastroenterol. 2019 Jan;54(1):10-18. doi: 10.1007/s00535-018-1498-3. Epub 2018 Aug 12.

Feeding difficulties in children with non-IgE-mediated food allergic gastrointestinal disorders. Chehade M, Meyer R, Beauregard A. Ann Allergy Asthma Immunol. 2019 Jun;122(6):603-609. doi: 10.1016/j.anai.2019.03.020. Epub 2019 Mar 26.

Fibrostenotic eosinophilic esophagitis might reflect epithelial lysyl oxidase induction by fibroblast-derived TNF-α. Kasagi Y, Dods K, Wang JX, Chandramouleeswaran PM, Benitez AJ, Gambanga F, Kluger J, Ashorobi T, Gross J, Tobias JW, Klein-Szanto AJ, Spergel JM, Cianferoni A, Falk GW, Whelan KA, Nakagawa H, Muir AB. J Allergy Clin Immunol. 2019 Jul;144(1):171-182. doi: 10.1016/j.jaci.2018.10.067. Epub 2018 Dec 20.

Histologic similarities in children with eosinophilic esophagitis and proton pump inhibitor-responsive esophageal eosinophilia. Nguyen N, Baumgarten A, Wright BL, Capocelli KE, Pan Z, Lee JJ, Furuta GT, Masterson JC. J Allergy Clin Immunol. 2019 Mar;143(3):1237-1240.e2. doi: 10.1016/j.jaci.2018.10.047. Epub 2018 Nov 14.

How to Advance Research, Education, and Training in the Study of Rare Diseases. Groft SC, Gopal-Srivastava R, Dellon ES, Gupta SK. Gastroenterology. 2019 Oct;157(4):917-921. doi: 10.1053/j.gastro.2019.08.010. Epub 2019 Aug 8.

Illuminating Elimination Diets: Controversies Regarding Dietary Treatment of Eosinophilic Esophagitis. Cotton CC, Durban R, Dellon ES. Dig Dis Sci. 2019 Jun;64(6):1401-1408. doi: 10.1007/s10620-019-05602-w.

Immunology of the ancestral differences in eosinophilic esophagitis. Kottyan L, Spergel JM, Cianferoni A. Ann Allergy Asthma Immunol. 2019 May;122(5):443-444. doi: 10.1016/j.anai.2018.10.026. Epub 2018 Nov 7.

Increasing Rates of Diagnosis, Substantial Co-Occurrence, and Variable Treatment Patterns of Eosinophilic Gastritis, Gastroenteritis, and Colitis Based on 10-Year Data Across a Multicenter Consortium. Pesek RD, Reed CC, Muir AB, Fulkerson PC, Menard-Katcher C, Falk GW, Kuhl J, Martin EK, Magier AZ, Ahmed F, Demarshall M, Gupta A, Gross J, Ashorobi T, Carpenter CL, Krischer JP, Gonsalves N, Spergel JM, Gupta SK, Furuta GT, Rothenberg ME, Dellon ES; Consortium of Eosinophilic Gastrointestinal Disease Researchers (CEGIR). Am J Gastroenterol. 2019 Jun;114(6):984-994. doi: 10.14309/ajg.0000000000000228.

Mechanisms of gastrointestinal allergic disorders. Azouz NP, Rothenberg ME. J Clin Invest. 2019 Mar 11;129(4):1419-1430. doi: 10.1172/JCI124604. eCollection 2019 Mar 11.

Minimally symptomatic patients with eosinophilic esophagitis should still be actively treated-PRO. Muir A, Moore H, Spergel JM. Ann Allergy Asthma Immunol. 2019 Jun;122(6):572-573. doi: 10.1016/j.anai.2018.09.468. Epub 2018 Oct 5.

New Developments in the Diagnosis and Treatment of Eosinophilic Esophagitis. Nhu QM, Moawad FJ. Curr Treat Options Gastroenterol. 2019 Mar;17(1):48-62. doi: 10.1007/s11938-019-00216-7.

No Maintenance, No Gain in Long-term Treatment of Eosinophilic Esophagitis. Dellon ES. Clin Gastroenterol Hepatol. 2019 Feb;17(3):397-399. doi: 10.1016/j.cgh.2018.07.038.

Overestimation of the diagnosis of eosinophilic colitis with reliance on billing codes. Muir AB, Jensen ET, Wechsler JB, Menard-Katcher P, Falk GW, Aceves SS, Furuta GT, Dellon ES, Rothenberg ME, Spergel JM. J Allergy Clin Immunol Pract. 2019 Sep-Oct;7(7):2434-2436. doi: 10.1016/j.jaip.2019.03.020. Epub 2019 Mar 25.

Prevalence of eosinophilic colitis and the diagnoses associated with colonic eosinophilia. DiTommaso LA, Rosenberg CE, Eby MD, Tasco A, Collins MH, Lyles JL, Putnam PE, Mukkada VA, Rothenberg ME. J Allergy Clin Immunol. 2019 May;143(5):1928-1930.e3. doi: 10.1016/j.jaci.2018.12.1002. Epub 2019 Jan 14.

Role of genetics, environment, and their interactions in the pathogenesis of eosinophilic esophagitis. Lyles J, Rothenberg M. Curr Opin Immunol. 2019 Oct;60:46-53. doi: 10.1016/j.coi.2019.04.004. Epub 2019 May 25.

Screening children for eosinophilic esophagitis: allergic and other risk factors. Ruffner MA, Capucilli P, Hill DA, Spergel JM. Expert Rev Clin Immunol. 2019 Apr;15(4):315-318. doi: 10.1080/1744666X.2019.1579643. Epub 2019 Feb 20.

The Salivary Microbiome Is Altered in Children With Eosinophilic Esophagitis and Correlates With Disease Activity. Hiremath G, Shilts MH, Boone HH, Correa H, Acra S, Tovchigrechko A, Rajagopala SV, Das SR. Clin Transl Gastroenterol. 2019 Jun;10(6):e00039. doi: 10.14309/ctg.0000000000000039.

Toll-like receptor 2 stimulation augments esophageal barrier integrity. Ruffner MA, Song L, Maurer K, Shi L, Carroll MC, Wang JX, Muir AB, Spergel JM, Sullivan KE. Allergy. 2019 Dec;74(12):2449-2460. doi: 10.1111/all.13968. Epub 2019 Jul 25.

Use of hPSC-derived 3D organoids and mouse genetics to define the roles of YAP in the development of the esophagus. Bailey DD, Zhang Y, van Soldt BJ, Jiang M, Suresh S, Nakagawa H, Rustgi AK, Aceves SS, Cardoso WV, Que J. Development. 2019 Dec 4;146(23):dev178855. doi: 10.1242/dev.178855.

A Review of Tertiary Referrals for Management of Pediatric Esophageal Eosinophilia. Godwin B, Liacouras C, Mehta V, Eisenberg J, Agawu A, Brown-Whitehorn T, Ruffner MA, Verma R, Cianferoni A, Spergel JM, Muir AB. Front Pediatr. 2018 Jun 20;6:173. doi: 10.3389/fped.2018.00173. eCollection 2018.

Alignment of parent- and child-reported outcomes and histology in eosinophilic esophagitis across multiple CEGIR sites. Aceves SS, King E, Collins MH, Yang GY, Capocelli KE, Abonia JP, Atkins D, Bonis PA, Carpenter CL, Dellon ES, Eby MD, Falk GW, Gonsalves N, Gupta SK, Hirano I, Kocher K, Krischer JP, Leung J, Lipscomb J, Menard-Katcher P, Mukkada VA, Pan Z, Spergel JM, Sun Q, Wershil BK, Rothenberg ME, Furuta GT; Consortium of Eosinophilic Gastrointestinal Disease Researchers (CEGIR). J Allergy Clin Immunol. 2018 Jul;142(1):130-138.e1. doi: 10.1016/j.jaci.2018.05.014. Epub 2018 May 29.

Allergic components of eosinophilic esophagitis. Spergel J, Aceves SS. J Allergy Clin Immunol. 2018 Jul;142(1):1-8. doi: 10.1016/j.jaci.2018.05.001.

Assessing Adherence and Barriers to Long-Term Elimination Diet Therapy in Adults with Eosinophilic Esophagitis. Wang R, Hirano I, Doerfler B, Zalewski A, Gonsalves N, Taft T. Dig Dis Sci. 2018 Jul;63(7):1756-1762. doi: 10.1007/s10620-018-5045-0. Epub 2018 Apr 2.

Authors' response. Spergel JM, Dellon ES, Liacouras CA, Hirano I, Molina-Infante J, Bredenoord AJ, Furuta GT. Ann Allergy Asthma Immunol. 2018 Dec;121(6):747-748. doi: 10.1016/j.anai.2018.10.015. Epub 2018 Oct 13.

Biological therapies for eosinophilic gastrointestinal diseases. Wechsler JB, Hirano I. J Allergy Clin Immunol. 2018 Jul;142(1):24-31.e2. doi: 10.1016/j.jaci.2018.05.018. Epub 2018 May 31.

Clinical Implications of Pediatric Colonic Eosinophilia. Mark J, Fernando SD, Masterson JC, Pan Z, Capocelli KE, Furuta GT, de Zoeten EF. J Pediatr Gastroenterol Nutr. 2018 May;66(5):760-766. doi: 10.1097/MPG.0000000000001784.

Clinical tolerance in eosinophilic esophagitis. Ruffner MA, Brown-Whitehorn TF, Verma R, Cianferoni A, Gober L, Shuker M, Muir AB, Liacouras CA, Spergel JM. J Allergy Clin Immunol Pract. 2018 Mar-Apr;6(2):661-663. doi: 10.1016/j.jaip.2017.06.035. Epub 2017 Aug 12.

Commentary: Individuals affected by Eosinophilic Gastrointestinal Disorders Have Complex Unmet Needs and Experience Barriers to Care. Hiremath G, Dellon ES. J Rare Dis Res Treat. 2018;3(2):34-36. doi: 10.29245/2572-9411/2018/2.1155. Epub 2018 Jul 17.

Diagnostic and Therapeutic Long-term Management of Eosinophilic Esophagitis- Current Concepts and Perspectives for Steroid Use. Greuter T, Alexander JA, Straumann A, Katzka DA. Clin Transl Gastroenterol. 2018 Dec;9(12):e212. doi: 10.1038/s41424-018-0074-8.

Emerging drugs for eosinophilic esophagitis. Pesek RD, Gupta SK. Expert Opin Emerg Drugs. 2018 Jun;23(2):173-183. doi: 10.1080/14728214.2018.1483335. Epub 2018 Jun 8.

Environmental factors and eosinophilic esophagitis. Jensen ET, Dellon ES. J Allergy Clin Immunol. 2018 Jul;142(1):32-40. doi: 10.1016/j.jaci.2018.04.015. Epub 2018 May 2.

Eosinophilic Esophagitis. Wright BL, Spergel JM. J Allergy Clin Immunol Pract. 2018 Sep-Oct;6(5):1799-1801. doi: 10.1016/j.jaip.2018.06.019.

Eosinophilic Esophagitis Is a Late Manifestation of the Allergic March. Hill DA, Grundmeier RW, Ramos M, Spergel JM. J Allergy Clin Immunol Pract. 2018 Sep-Oct;6(5):1528-1533. doi: 10.1016/j.jaip.2018.05.010. Epub 2018 Jun 25.

Eosinophilic Esophagitis Reference Score Accurately Identifies Disease Activity and Treatment Effects in Children. Wechsler JB, Bolton SM, Amsden K, Wershil BK, Hirano I, Kagalwalla AF. Clin Gastroenterol Hepatol. 2018 Jul;16(7):1056-1063. doi: 10.1016/j.cgh.2017.12.019. Epub 2017 Dec 15.

Eosinophilic Esophagitis and the Eosinophilic Gastrointestinal Diseases: Approach to Diagnosis and Management. Steinbach EC, Hernandez M, Dellon ES. J Allergy Clin Immunol Pract. 2018 Sep-Oct;6(5):1483-1495. doi: 10.1016/j.jaip.2018.06.012. Epub 2018 Jul 3.

Eosinophilic Esophagitis: an Important Comorbid Condition of Asthma?. Durrani SR, Mukkada VA, Guilbert TW. Clin Rev Allergy Immunol. 2018 Aug;55(1):56-64. doi: 10.1007/s12016-018-8670-7.

Eosinophilic Gastroenteritis and Colitis: Not Yet Ready for the Big Leagues. Zevit N, Furuta GT. J Pediatr Gastroenterol Nutr. 2018 Jul;67(1):1-2. doi: 10.1097/MPG.0000000000001998.

Eosinophilic Gastrointestinal Disorders Pathology. Collins MH, Capocelli K, Yang GY. Front Med (Lausanne). 2018 Jan 15;4:261. doi: 10.3389/fmed.2017.00261. eCollection 2017.

Eosinophilic esophagitis (EoE) genetic susceptibility is mediated by synergistic interactions between EoE-specific and general atopic disease loci. Martin LJ, He H, Collins MH, Abonia JP, Biagini Myers JM, Eby M, Johansson H, Kottyan LC, Khurana Hershey GK, Rothenberg ME. J Allergy Clin Immunol. 2018 May;141(5):1690-1698. doi: 10.1016/j.jaci.2017.09.046. Epub 2017 Nov 10.

Eosinophilic esophagitis: Time to classify into endotypes?. Ferguson AE, Fulkerson PC. J Allergy Clin Immunol. 2018 Jul;142(1):71-72. doi: 10.1016/j.jaci.2018.04.025. Epub 2018 May 8.

Eosinophilic esophagitis: pathophysiology and its clinical implications. Inage E, Furuta GT, Menard-Katcher C, Masterson JC. Am J Physiol Gastrointest Liver Physiol. 2018 Nov 1;315(5):G879-G886. doi: 10.1152/ajpgi.00174.2018. Epub 2018 Sep 13.

Eosinophilic oesophagitis endotype classification by molecular, clinical, and histopathological analyses: a cross-sectional study. Shoda T, Wen T, Aceves SS, Abonia JP, Atkins D, Bonis PA, Caldwell JM, Capocelli KE, Carpenter CL, Collins MH, Dellon ES, Eby MD, Gonsalves N, Gupta SK, Falk GW, Hirano I, Menard-Katcher P, Kuhl JT, Krischer JP, Leung J, Mukkada VA, Spergel JM, Trimarchi MP, Yang GY, Zimmermann N, Furuta GT, Rothenberg ME; Consortium of Eosinophilic Gastrointestinal Disease Researchers (CEGIR). Lancet Gastroenterol Hepatol. 2018 Jul;3(7):477-488. doi: 10.1016/S2468-1253(18)30096-7. Epub 2018 May 3.

Epidemiology and Natural History of Eosinophilic Esophagitis. Dellon ES, Hirano I. Gastroenterology. 2018 Jan;154(2):319-332.e3. doi: 10.1053/j.gastro.2017.06.067. Epub 2017 Aug 1.

Epithelial acid imbalance in patients with eosinophilic esophagitis. Hill DA, Spergel JM. J Allergy Clin Immunol. 2018 Dec;142(6):1757-1758. doi: 10.1016/j.jaci.2018.09.026. Epub 2018 Oct 10.

Epithelial origin of eosinophilic esophagitis. Rochman M, Azouz NP, Rothenberg ME. J Allergy Clin Immunol. 2018 Jul;142(1):10-23. doi: 10.1016/j.jaci.2018.05.008.

Esophageal 3D Culture Systems as Modeling Tools in Esophageal Epithelial Pathobiology and Personalized Medicine. Whelan KA, Muir AB, Nakagawa H. Cell Mol Gastroenterol Hepatol. 2018 Jan 31;5(4):461-478. doi: 10.1016/j.jcmgh.2018.01.011. eCollection 2018.

Food allergen triggers are increased in children with the TSLP risk allele and eosinophilic esophagitis. Fahey LM, Chandramouleeswaran PM, Guan S, Benitez AJ, Furuta GT, Aceves SS, Wang ML, Liacouras CA, Muir AB, Sleiman PM, Hakonarson H, Spergel JM, Cianferoni A. Clin Transl Gastroenterol. 2018 Mar 6;9(3):139. doi: 10.1038/s41424-018-0003-x.

Histologic improvement after 6 weeks of dietary elimination for eosinophilic esophagitis may be insufficient to determine efficacy. Philpott H, Dellon E. Asia Pac Allergy. 2018 Apr 25;8(2):e20. doi: 10.5415/apallergy.2018.8.e20. eCollection 2018 Apr.

Increased GATA-3 and T-bet expression in eosinophilic esophagitis versus gastroesophageal reflux disease. Wright BL, Nguyen N, Shim KP, Masterson JC, Jacobsen EA, Ochkur SI, Lee JJ, Furuta GT. J Allergy Clin Immunol. 2018 May;141(5):1919-1921.e5. doi: 10.1016/j.jaci.2017.12.993. Epub 2018 Jan 31.

Individuals affected by eosinophilic gastrointestinal disorders have complex unmet needs and frequently experience unique barriers to care. Hiremath G, Kodroff E, Strobel MJ, Scott M, Book W, Reidy C, Kyle S, Mack D, Sable K, Abonia P, Spergel J, Gupta SK, Furuta TG, Rothenberg ME, Dellon ES. Clin Res Hepatol Gastroenterol. 2018 Oct;42(5):483-493. doi: 10.1016/j.clinre.2018.03.003. Epub 2018 Mar 31.

Is eosinophilic esophagitis a member of the atopic march?. Hill DA, Spergel JM. Ann Allergy Asthma Immunol. 2018 Feb;120(2):113-114. doi: 10.1016/j.anai.2017.10.003.

Latest Insights on the Relationship Between Symptoms and Biologic Findings in Adults with Eosinophilic Esophagitis. Safroneeva E, Straumann A, Schoepfer AM. Gastrointest Endosc Clin N Am. 2018 Jan;28(1):35-45. doi: 10.1016/j.giec.2017.08.001.

Management of Esophageal Food Impaction Varies Among Gastroenterologists and Affects Identification of Eosinophilic Esophagitis. Hiremath G, Vaezi MF, Gupta SK, Acra S, Dellon ES. Dig Dis Sci. 2018 Jun;63(6):1428-1437. doi: 10.1007/s10620-018-4972-0. Epub 2018 Feb 20.

New Developments in the Diagnosis, Therapy, and Monitoring of Eosinophilic Esophagitis. Patel RV, Hirano I. Curr Treat Options Gastroenterol. 2018 Mar;16(1):15-26. doi: 10.1007/s11938-018-0167-1.

New developments in patients with eosinophilic gastrointestinal diseases presented at the CEGIR/TIGERS Symposium at the 2018 American Academy of Allergy, Asthma & Immunology Meeting. Spergel JM, Aceves SS, Kliewer K, Gonsalves N, Chehade M, Wechsler JB, Groetch M, Friedlander J, Dellon ES, Book W, Hirano I, Muir AB, Cianferoni A, Spencer L, Liacouras CA, Cheng E, Kottyan L, Wen T, Platts-Mills T, Rothenberg ME. J Allergy Clin Immunol. 2018 Jul;142(1):48-53. doi: 10.1016/j.jaci.2018.05.005. Epub 2018 May 24.

Nonesophageal Eosinophilic Gastrointestinal Disorders: Clinical Care and Future Directions. Naramore S, Gupta SK. J Pediatr Gastroenterol Nutr. 2018 Sep;67(3):318-321. doi: 10.1097/MPG.0000000000002040.

Pathophysiology of Eosinophilic Esophagitis. O'Shea KM, Aceves SS, Dellon ES, Gupta SK, Spergel JM, Furuta GT, Rothenberg ME. Gastroenterology. 2018 Jan;154(2):333-345. doi: 10.1053/j.gastro.2017.06.065. Epub 2017 Jul 27.

Pediatric Eosinophilic Esophagitis Endotypes: Are We Closer to Predicting Treatment Response?. Ferguson AE, Mukkada VA, Fulkerson PC. Clin Rev Allergy Immunol. 2018 Aug;55(1):43-55. doi: 10.1007/s12016-017-8658-8.

Pediatric eosinophilic esophagitis: updates for the primary care setting. Ruffner MA, Spergel JM. Curr Opin Pediatr. 2018 Dec;30(6):829-836. doi: 10.1097/MOP.0000000000000698.

Phenotypic Characterization of Eosinophilic Esophagitis in a Large Multicenter Patient Population from the Consortium for Food Allergy Research. Chehade M, Jones SM, Pesek RD, Burks AW, Vickery BP, Wood RA, Leung DYM, Furuta GT, Fleischer DM, Henning AK, Dawson P, Lindblad RW, Sicherer SH, Abonia JP, Sherrill JD, Sampson HA, Rothenberg ME. J Allergy Clin Immunol Pract. 2018 Sep-Oct;6(5):1534-1544.e5. doi: 10.1016/j.jaip.2018.05.038. Epub 2018 Aug 1.

Revisiting the NIH Taskforce on the Research needs of Eosinophil-Associated Diseases (RE-TREAD). Khoury P, Akuthota P, Ackerman SJ, Arron JR, Bochner BS, Collins MH, Kahn JE, Fulkerson PC, Gleich GJ, Gopal-Srivastava R, Jacobsen EA, Leiferman KM, Francesca LS, Mathur SK, Minnicozzi M, Prussin C, Rothenberg ME, Roufosse F, Sable K, Simon D, Simon HU, Spencer LA, Steinfeld J, Wardlaw AJ, Wechsler ME, Weller PF, Klion AD. J Leukoc Biol. 2018 Jul;104(1):69-83. doi: 10.1002/JLB.5MR0118-028R. Epub 2018 Apr 19.

Summary of the updated international consensus diagnostic criteria for eosinophilic esophagitis: AGREE conference. Spergel JM, Dellon ES, Liacouras CA, Hirano I, Molina-Infante J, Bredenoord AJ, Furuta GT; participants of AGREE. Ann Allergy Asthma Immunol. 2018 Sep;121(3):281-284. doi: 10.1016/j.anai.2018.05.035. Epub 2018 Jul 18.

TGF-β1 alters esophageal epithelial barrier function by attenuation of claudin-7 in eosinophilic esophagitis. Nguyen N, Fernando SD, Biette KA, Hammer JA, Capocelli KE, Kitzenberg DA, Glover LE, Colgan SP, Furuta GT, Masterson JC. Mucosal Immunol. 2018 Mar;11(2):415-426. doi: 10.1038/mi.2017.72. Epub 2017 Aug 23.

The Esophageal Organoid System Reveals Functional Interplay Between Notch and Cytokines in Reactive Epithelial Changes. Kasagi Y, Chandramouleeswaran PM, Whelan KA, Tanaka K, Giroux V, Sharma M, Wang J, Benitez AJ, DeMarshall M, Tobias JW, Hamilton KE, Falk GW, Spergel JM, Klein-Szanto AJ, Rustgi AK, Muir AB, Nakagawa H. Cell Mol Gastroenterol Hepatol. 2018 Jan 3;5(3):333-352. doi: 10.1016/j.jcmgh.2017.12.013. eCollection 2018 Mar.

The Occasional Ebb and Flow between Eosinophilic Esophagitis and IgE-Mediated Food Allergy. Atkins D. J Allergy Clin Immunol Pract. 2018 Mar-Apr;6(2):651-652. doi: 10.1016/j.jaip.2017.11.011.

The antiprotease SPINK7 serves as an inhibitory checkpoint for esophageal epithelial inflammatory responses. Azouz NP, Ynga-Durand MA, Caldwell JM, Jain A, Rochman M, Fischesser DM, Ray LM, Bedard MC, Mingler MK, Forney C, Eilerman M, Kuhl JT, He H, Biagini Myers JM, Mukkada VA, Putnam PE, Khurana Hershey GK, Kottyan LC, Wen T, Martin LJ, Rothenberg ME. Sci Transl Med. 2018 Jun 6;10(444):eaap9736. doi: 10.1126/scitranslmed.aap9736.

The atopic march: Critical evidence and clinical relevance. Hill DA, Spergel JM. Ann Allergy Asthma Immunol. 2018 Feb;120(2):131-137. doi: 10.1016/j.anai.2017.10.037.

The role of maintenance therapy in eosinophilic esophagitis: who, why, and how?. Philpott H, Dellon ES. J Gastroenterol. 2018 Feb;53(2):165-171. doi: 10.1007/s00535-017-1397-z. Epub 2017 Oct 10.

Updated International Consensus Diagnostic Criteria for Eosinophilic Esophagitis: Proceedings of the AGREE Conference. Dellon ES, Liacouras CA, Molina-Infante J, Furuta GT, Spergel JM, Zevit N, Spechler SJ, Attwood SE, Straumann A, Aceves SS, Alexander JA, Atkins D, Arva NC, Blanchard C, Bonis PA, Book WM, Capocelli KE, Chehade M, Cheng E, Collins MH, Davis CM, Dias JA, Di Lorenzo C, Dohil R, Dupont C, Falk GW, Ferreira CT, Fox A, Gonsalves NP, Gupta SK, Katzka DA, Kinoshita Y, Menard-Katcher C, Kodroff E, Metz DC, Miehlke S, Muir AB, Mukkada VA, Murch S, Nurko S, Ohtsuka Y, Orel R, Papadopoulou A, Peterson KA, Philpott H, Putnam PE, Richter JE, Rosen R, Rothenberg ME, Schoepfer A, Scott MM, Shah N, Sheikh J, Souza RF, Strobel MJ, Talley NJ, Vaezi MF, Vandenplas Y, Vieira MC, Walker MM, Wechsler JB, Wershil BK, Wen T, Yang GY, Hirano I, Bredenoord AJ. Gastroenterology. 2018 Oct;155(4):1022-1033.e10. doi: 10.1053/j.gastro.2018.07.009. Epub 2018 Sep 6.

What Is the Relationship Between Eosinophilic Esophagitis (EoE) and Aeroallergens? Implications for Allergen Immunotherapy. Egan M, Atkins D. Curr Allergy Asthma Rep. 2018 Jun 16;18(8):43. doi: 10.1007/s11882-018-0798-2.

Aeroallergens in Eosinophilic Esophagitis: Significant Triggers or Noise in the System?. Atkins D. J Pediatr Gastroenterol Nutr. 2017 Jan;64(1):1-2. doi: 10.1097/MPG.0000000000001268.

Autophagy mediates epithelial cytoprotection in eosinophilic oesophagitis. Whelan KA, Merves JF, Giroux V, Tanaka K, Guo A, Chandramouleeswaran PM, Benitez AJ, Dods K, Que J, Masterson JC, Fernando SD, Godwin BC, Klein-Szanto AJ, Chikwava K, Ruchelli ED, Hamilton KE, Muir AB, Wang ML, Furuta GT, Falk GW, Spergel JM, Nakagawa H. Gut. 2017 Jul;66(7):1197-1207. doi: 10.1136/gutjnl-2015-310341. Epub 2016 Feb 16.

Clarifying misunderstandings and misinterpretations about proton pump inhibitor-responsive oesophageal eosinophilia. Molina-Infante J, Hirano I, Spechler SJ; PPI-REE Task Force of the European Society of Eosinophilic Oesophagitis (EUREOS). Gut. 2017 Jun;66(6):1173-1174. doi: 10.1136/gutjnl-2016-312851. Epub 2016 Sep 13.

Clinical Applications of the Eosinophilic Esophagitis Diagnostic Panel. Wen T, Rothenberg ME. Front Med (Lausanne). 2017 Jul 14;4:108. doi: 10.3389/fmed.2017.00108. eCollection 2017.

Creating a multi-center rare disease consortium - the Consortium of Eosinophilic Gastrointestinal Disease Researchers (CEGIR). Cheng K, Gupta SK, Kantor S, Kuhl JT, Aceves SS, Bonis PA, Capocelli KE, Carpenter C, Chehade M, Collins MH, Dellon ES, Falk GW, Gopal-Srivastava R, Gonsalves N, Hirano I, King EC, Leung J, Krischer JP, Mukkada VA, Schoepfer A, Spergel JM, Straumann A, Yang GY, Furuta GT, Rothenberg ME. Transl Sci Rare Dis. 2017 Dec 18;2(3-4):141-155. doi: 10.3233/TRD-170016.

Diet and Stress in Pediatric Eosinophilic Esophagitis. Case C, Furuta GT, Atkins D, Pan Z, Robinson J. J Pediatr Gastroenterol Nutr. 2017 Sep;65(3):281-284. doi: 10.1097/MPG.0000000000001481.

Dilation of Pediatric Eosinophilic Esophagitis: Adverse Events and Short-term Outcomes. Menard-Katcher C, Furuta GT, Kramer RE. J Pediatr Gastroenterol Nutr. 2017 May;64(5):701-706. doi: 10.1097/MPG.0000000000001336.

Effects of allergen sensitization on response to therapy in children with eosinophilic esophagitis. Pesek RD, Rettiganti M, O'Brien E, Beckwith S, Daniel C, Luo C, Scurlock AM, Chandler P, Levy RA, Perry TT, Kennedy JL, Chervinskiy S, Vonlanthen M, Casteel H, Fiedorek SC, Gibbons T, Jones SM. Ann Allergy Asthma Immunol. 2017 Aug;119(2):177-183. doi: 10.1016/j.anai.2017.06.006. Epub 2017 Jul 1.

Eosinophilic Esophagitis: A Primary Disease of the Esophageal Mucosa. Abonia JP, Spergel JM, Cianferoni A. J Allergy Clin Immunol Pract. 2017 Jul-Aug;5(4):951-955. doi: 10.1016/j.jaip.2017.02.004. Epub 2017 Mar 28.

Eosinophilic esophagitis phenotypes: Ready for prime time?. Atkins D, Furuta GT, Liacouras CA, Spergel JM. Pediatr Allergy Immunol. 2017 Jun;28(4):312-319. doi: 10.1111/pai.12715. Epub 2017 May 4.

Influence of Age and Eosinophilic Esophagitis on Esophageal Distensibility in a Pediatric Cohort. Menard-Katcher C, Benitez AJ, Pan Z, Ahmed FN, Wilkins BJ, Capocelli KE, Liacouras CA, Verma R, Spergel JM, Furuta GT, Muir AB. Am J Gastroenterol. 2017 Sep;112(9):1466-1473. doi: 10.1038/ajg.2017.131. Epub 2017 May 16.

Lack of Knowledge and Low Readiness for Health Care Transition in Eosinophilic Esophagitis and Eosinophilic Gastroenteritis. Eluri S, Book WM, Kodroff E, Strobel MJ, Gebhart JH, Jones PD, Menard-Katcher P, Ferris ME, Dellon ES. J Pediatr Gastroenterol Nutr. 2017 Jul;65(1):53-57. doi: 10.1097/MPG.0000000000001415.

Management of refractory eosinophilic oesophagitis. Dellon ES. Nat Rev Gastroenterol Hepatol. 2017 Aug;14(8):479-490. doi: 10.1038/nrgastro.2017.56. Epub 2017 May 24.

Newly developed and validated eosinophilic esophagitis histology scoring system and evidence that it outperforms peak eosinophil count for disease diagnosis and monitoring. Collins MH, Martin LJ, Alexander ES, Boyd JT, Sheridan R, He H, Pentiuk S, Putnam PE, Abonia JP, Mukkada VA, Franciosi JP, Rothenberg ME. Dis Esophagus. 2017 Feb 1;30(3):1-8. doi: 10.1111/dote.12470.

Novel immunologic mechanisms in eosinophilic esophagitis. Caldwell JM, Paul M, Rothenberg ME. Curr Opin Immunol. 2017 Oct;48:114-121. doi: 10.1016/j.coi.2017.08.006. Epub 2017 Sep 29.

Propofol Use in Pediatric Patients With Food Allergy and Eosinophilic Esophagitis. Mehta P, Sundaram SS, Furuta GT, Pan Z, Atkins D, Markowitz S. J Pediatr Gastroenterol Nutr. 2017 Apr;64(4):546-549. doi: 10.1097/MPG.0000000000001291.

Proton pump inhibitor-responsive oesophageal eosinophilia: too early to change clinical practice. Muir AB, Wang ML, Metz D, Falk G, Markowitz J, Spergel JM, Liacouras CA. Gut. 2017 May;66(5):979-980. doi: 10.1136/gutjnl-2016-312601. Epub 2016 Jul 26.

Sticky Steroids: In Search of an Approved Treatment for Eosinophilic Esophagitis. Nguyen N, Furuta GT, Menard-Katcher C. J Pediatr Gastroenterol Nutr. 2017 Feb;64(2):172-173. doi: 10.1097/MPG.0000000000001326.

The National Biome Initiative: An allergy perspective. Furuta GT, Aceves SS. J Allergy Clin Immunol. 2017 Apr;139(4):1131-1134. doi: 10.1016/j.jaci.2017.02.008. Epub 2017 Feb 28.

The Prevalence of Eosinophilic Esophagitis in Pediatric Patients with IgE-Mediated Food Allergy. Hill DA, Dudley JW, Spergel JM. J Allergy Clin Immunol Pract. 2017 Mar-Apr;5(2):369-375. doi: 10.1016/j.jaip.2016.11.020. Epub 2016 Dec 30.

Toward More Efficient Dietary Elimination Therapy for Eosinophilic Esophagitis: The Fantastic 4?. Eluri S, Dellon ES. Clin Gastroenterol Hepatol. 2017 Nov;15(11):1668-1670. doi: 10.1016/j.cgh.2017.07.022. Epub 2017 Jul 26.

White Paper AGA: Drug Development for Eosinophilic Esophagitis. Hirano I, Spechler S, Furuta G, Dellon ES. Clin Gastroenterol Hepatol. 2017 Aug;15(8):1173-1183. doi: 10.1016/j.cgh.2017.03.016. Epub 2017 Mar 22.

2015 David Y. Graham Lecture: The First Two Decades Of Eosinophilic Esophagitis-From Acid Reflux To Food Allergy. Hirano I. Am J Gastroenterol. 2016 Jun;111(6):770-6. doi: 10.1038/ajg.2016.136. Epub 2016 Apr 12.

Advances in the endoscopic evaluation of eosinophilic esophagitis. Kia L, Hirano I. Curr Opin Gastroenterol. 2016 Jul;32(4):325-31. doi: 10.1097/MOG.0000000000000278.

Deeper Than the Epithelium: Role of Matrix and Fibroblasts in Pediatric and Adult Eosinophilic Esophagitis. Nguyen N, Furuta GT, Masterson JC. J Pediatr Gastroenterol Nutr. 2016 Aug;63(2):168-9. doi: 10.1097/MPG.0000000000001183.

Diets for diagnosis and management of food allergy: The role of the dietitian in eosinophilic esophagitis in adults and children. Venter C, Fleischer DM. Ann Allergy Asthma Immunol. 2016 Nov;117(5):468-471. doi: 10.1016/j.anai.2016.08.003. Epub 2016 Aug 31.

Eosinophil progenitor levels are increased in patients with active pediatric eosinophilic esophagitis. Morris DW, Stucke EM, Martin LJ, Abonia JP, Mukkada VA, Putnam PE, Rothenberg ME, Fulkerson PC. J Allergy Clin Immunol. 2016 Sep;138(3):915-918.e5. doi: 10.1016/j.jaci.2016.03.027. Epub 2016 May 16.

Eosinophilic Esophagitis-Associated Chemical and Mechanical Microenvironment Shapes Esophageal Fibroblast Behavior. Muir AB, Dods K, Henry SJ, Benitez AJ, Lee D, Whelan KA, DeMarshall M, Hammer DA, Falk G, Wells RG, Spergel J, Nakagawa H, Wang ML. J Pediatr Gastroenterol Nutr. 2016 Aug;63(2):200-9. doi: 10.1097/MPG.0000000000001100.

Eosinophilic Gastrointestinal Disorders Affect More Than Just the Esophagus. Gonsalves N, Furuta GT, Atkins D. J Pediatr Gastroenterol Nutr. 2016 Jan;62(1):1-2. doi: 10.1097/MPG.0000000000000993.

Eosinophilic esophagitis: search for noninvasive techniques for long-term monitoring. Watts A, Alexander JA, Gupta SK. Gastrointest Endosc. 2016 Feb;83(2):307-8. doi: 10.1016/j.gie.2015.07.006.

Eosinophils, probiotics, and the microbiome. Rosenberg HF, Masterson JC, Furuta GT. J Leukoc Biol. 2016 Nov;100(5):881-888. doi: 10.1189/jlb.3RI0416-202R. Epub 2016 Aug 22.

Long-term assessment of esophageal remodeling in patients with pediatric eosinophilic esophagitis treated with topical corticosteroids. Rajan J, Newbury RO, Anilkumar A, Dohil R, Broide DH, Aceves SS. J Allergy Clin Immunol. 2016 Jan;137(1):147-156.e8. doi: 10.1016/j.jaci.2015.05.045. Epub 2015 Jul 30.

Mechanisms of Disease of Eosinophilic Esophagitis. Davis BP, Rothenberg ME. Annu Rev Pathol. 2016 May 23;11:365-93. doi: 10.1146/annurev-pathol-012615-044241. Epub 2016 Feb 24.

Microbiome and its impact on gastrointestinal atopy. Muir AB, Benitez AJ, Dods K, Spergel JM, Fillon SA. Allergy. 2016 Sep;71(9):1256-63. doi: 10.1111/all.12943. Epub 2016 Jun 23.

Narrow-caliber esophagus of eosinophilic esophagitis: difficult to define, resistant to remedy. Carlson DA, Hirano I. Gastrointest Endosc. 2016 Jun;83(6):1149-50. doi: 10.1016/j.gie.2016.01.034.

Non-IgE-mediated food allergy syndromes. Ruffner MA, Spergel JM. Ann Allergy Asthma Immunol. 2016 Nov;117(5):452-454. doi: 10.1016/j.anai.2016.04.014. Epub 2016 Oct 24.

Preferential Secretion of Thymic Stromal Lymphopoietin (TSLP) by Terminally Differentiated Esophageal Epithelial Cells: Relevance to Eosinophilic Esophagitis (EoE). Chandramouleeswaran PM, Shen D, Lee AJ, Benitez A, Dods K, Gambanga F, Wilkins BJ, Merves J, Noah Y, Toltzis S, Yearley JH, Spergel JM, Nakagawa H, Malefyt Rd, Muir AB, Wang ML. PLoS One. 2016 Mar 18;11(3):e0150968. doi: 10.1371/journal.pone.0150968. eCollection 2016.

Proton pump inhibitor-responsive oesophageal eosinophilia: an entity challenging current diagnostic criteria for eosinophilic oesophagitis. Molina-Infante J, Bredenoord AJ, Cheng E, Dellon ES, Furuta GT, Gupta SK, Hirano I, Katzka DA, Moawad FJ, Rothenberg ME, Schoepfer A, Spechler SJ, Wen T, Straumann A, Lucendo AJ; PPI-REE Task Force of the European Society of Eosinophilic Oesophagitis (EUREOS). Gut. 2016 Mar;65(3):524-31. doi: 10.1136/gutjnl-2015-310991. Epub 2015 Dec 18.

Rigid substrate induces esophageal smooth muscle hypertrophy and eosinophilic esophagitis fibrotic gene expression. Tkachenko E, Rawson R, La E, Doherty TA, Baum R, Cavagnero K, Miyanohara A, Dohil R, Kurten RC, Aceves SS. J Allergy Clin Immunol. 2016 Apr;137(4):1270-1272.e1. doi: 10.1016/j.jaci.2015.09.020. Epub 2015 Nov 2.

Should wheat, barley, rye, and/or gluten be avoided in a 6-food elimination diet?. Kliewer KL, Venter C, Cassin AM, Abonia JP, Aceves SS, Bonis PA, Dellon ES, Falk GW, Furuta GT, Gonsalves N, Gupta SK, Hirano I, Kagalwalla A, Leung J, Mukkada VA, Spergel JM, Rothenberg ME. J Allergy Clin Immunol. 2016 Apr;137(4):1011-1014. doi: 10.1016/j.jaci.2015.10.040. Epub 2015 Dec 24.

Substantial Variability in Biopsy Practice Patterns Among Gastroenterologists for Suspected Eosinophilic Gastrointestinal Disorders. Dellon ES, Collins MH, Bonis PA, Leung J, Capocelli KE, Dohil R, Falk GW, Furuta GT, Menard-Katcher C, Gupta SK, Hirano I, Hiremath GS, Kagalwalla AF, Wershil BK, Liacouras CA, Muir AB, Mukkada VA, Putnam PE, Schoepfer AM, Straumann A, Wo JM, Yang GY, Rothenberg ME, Gonsalves N. Clin Gastroenterol Hepatol. 2016 Dec;14(12):1842-1844. doi: 10.1016/j.cgh.2016.04.025. Epub 2016 Apr 22.

TGF-β1-induced PAI-1 contributes to a profibrotic network in patients with eosinophilic esophagitis. Rawson R, Yang T, Newbury RO, Aquino M, Doshi A, Bell B, Broide DH, Dohil R, Kurten R, Aceves SS. J Allergy Clin Immunol. 2016 Sep;138(3):791-800.e4. doi: 10.1016/j.jaci.2016.02.028. Epub 2016 Apr 8.

The Immunologic Mechanisms of Eosinophilic Esophagitis. Hill DA, Spergel JM. Curr Allergy Asthma Rep. 2016 Feb;16(2):9. doi: 10.1007/s11882-015-0592-3.

The Regulatory Function of Eosinophils. Wen T, Rothenberg ME. Microbiol Spectr. 2016 Oct;4(5):10.1128/microbiolspec.MCHD-0020-2015. doi: 10.1128/microbiolspec.MCHD-0020-2015.

The partnership of patient advocacy groups and clinical investigators in the rare diseases clinical research network. Merkel PA, Manion M, Gopal-Srivastava R, Groft S, Jinnah HA, Robertson D, Krischer JP; Rare Diseases Clinical Research Network. Orphanet J Rare Dis. 2016 May 18;11(1):66. doi: 10.1186/s13023-016-0445-8.

Topical glucocorticoid vs. diet therapy in eosinophilic esophagitis: the need for better treatment options. Imam T, Gupta SK. Expert Rev Clin Immunol. 2016 Aug;12(8):797-9. doi: 10.1080/1744666X.2016.1191947. Epub 2016 Jun 13.

Allergic mechanisms of Eosinophilic oesophagitis. Leung J, Beukema KR, Shen AH. Best Pract Res Clin Gastroenterol. 2015 Oct;29(5):709-720. doi: 10.1016/j.bpg.2015.09.012. Epub 2015 Sep 11.

An allergist's perspective to the evaluation of Eosinophilic Esophagitis. Spergel JM. Best Pract Res Clin Gastroenterol. 2015 Oct;29(5):771-781. doi: 10.1016/j.bpg.2015.06.011. Epub 2015 Jul 8.

Distinguishing GERD from eosinophilic oesophagitis: concepts and controversies. Kia L, Hirano I. Nat Rev Gastroenterol Hepatol. 2015 Jul;12(7):379-386. doi: 10.1038/nrgastro.2015.75. Epub 2015 May 19.

Environmental and infectious factors in eosinophilic esophagitis. Jensen ET, Dellon ES. Best Pract Res Clin Gastroenterol. 2015 Oct;29(5):721-729. doi: 10.1016/j.bpg.2015.06.008. Epub 2015 Jul 17.

Eosinophilic Esophagitis. Furuta GT, Katzka DA. N Engl J Med. 2015 Oct 22;373(17):1640-8. doi: 10.1056/NEJMra1502863.

Eosinophils in Gastrointestinal Disorders: Eosinophilic Gastrointestinal Diseases, Celiac Disease, Inflammatory Bowel Diseases, and Parasitic Infections. Mehta P, Furuta GT. Immunol Allergy Clin North Am. 2015 Aug;35(3):413-37. doi: 10.1016/j.iac.2015.04.003. Epub 2015 Jun 17.

From genetics to treatment of eosinophilic esophagitis. Cianferoni A, Spergel JM. Curr Opin Allergy Clin Immunol. 2015 Oct;15(5):417-25. doi: 10.1097/ACI.0000000000000200.

Inflammation-associated microbiota in pediatric eosinophilic esophagitis. Benitez AJ, Hoffmann C, Muir AB, Dods KK, Spergel JM, Bushman FD, Wang ML. Microbiome. 2015 Jun 1;3:23. doi: 10.1186/s40168-015-0085-6. eCollection 2015.

Management of proton pump inhibitor responsive-esophageal eosinophilia and eosinophilic esophagitis: controversies in treatment approaches. Kochar B, Dellon ES. Expert Rev Gastroenterol Hepatol. 2015;9(11):1359-69. doi: 10.1586/17474124.2015.1088384. Epub 2015 Sep 12.

Molecular, genetic, and cellular bases for treating eosinophilic esophagitis. Rothenberg ME. Gastroenterology. 2015 May;148(6):1143-57. doi: 10.1053/j.gastro.2015.02.002. Epub 2015 Feb 7.

Proton pump inhibitor-responsive oesophageal eosinophilia and eosinophilic oesophagitis: more similarities than differences. Eluri S, Dellon ES. Curr Opin Gastroenterol. 2015 Jul;31(4):309-15. doi: 10.1097/MOG.0000000000000185.

Recent advances in the pathological understanding of eosinophilic esophagitis. Cianferoni A, Spergel JM, Muir A. Expert Rev Gastroenterol Hepatol. 2015;9(12):1501-10. doi: 10.1586/17474124.2015.1094372. Epub 2015 Oct 15.

Recognition and Assessment of Eosinophilic Esophagitis: The Development of New Clinical Outcome Metrics. Nguyen N, Furuta GT, Menard-Katcher C. Gastroenterol Hepatol (N Y). 2015 Oct;11(10):670-4.

The TGFβ1 Promoter SNP C-509T and Food Sensitization Promote Esophageal Remodeling in Pediatric Eosinophilic Esophagitis. Rawson R, Anilkumar A, Newbury RO, Bafna V, Aquino M, Palmquist J, Hoffman HM, Mueller JL, Dohil R, Broide DH, Aceves SS. PLoS One. 2015 Dec 14;10(12):e0144651. doi: 10.1371/journal.pone.0144651. eCollection 2015.

Therapeutic strategies in eosinophilic esophagitis: Induction, maintenance and refractory disease. Sodikoff J, Hirano I. Best Pract Res Clin Gastroenterol. 2015 Oct;29(5):829-839. doi: 10.1016/j.bpg.2015.09.002. Epub 2015 Sep 11.

ALDH5A1-deficient iPSC-derived excitatory and inhibitory neurons display cell type specific alterations. Afshar-Saber W, Teaney NA, Winden KD, Jumo H, Shi X, McGinty G, Hubbs J, Chen C, Tokatly Latzer I, Gasparoli F, Ebrahimi-Fakhari D, Buttermore ED, Roullet JB, Pearl PL, Sahin M. Neurobiol Dis. 2024 Jan;190:106386. doi: 10.1016/j.nbd.2023.106386. Epub 2023 Dec 16.

Common epilepsy variants from the general population are not associated with epilepsy among individuals with tuberous sclerosis complex. Richard MA, Lupo PJ, Ehli EA, Sahin M, Krueger DA, Wu JY, Bebin EM, Au KS, Northrup H, Farach LS; TACERN Study Group. Am J Med Genet A. 2024 Jun;194(6):e63569. doi: 10.1002/ajmg.a.63569. Epub 2024 Feb 17.

Impact of the COVID-19 Pandemic on People Living With Rare Diseases and Their Families: Results of a National Survey. Macaluso M, Rothenberg ME, Ferkol T, Kuhnell P, Kaminski HJ, Kimberlin DW, Benatar M, Chehade M; Principal Investigators of the Rare Diseases Clinical Research Network – Cycle 4. JMIR Public Health Surveill. 2024 Feb 14;10:e48430. doi: 10.2196/48430.

Morphological Features of Language Regions in Individuals with Tuberous Sclerosis Complex. Ahtam B, Yun HJ, Vyas R, Pienaar R, Wilson JH, Goswami CP, Berto LF, Warfield SK, Sahin M, Grant PE, Peters JM, Im K. J Autism Dev Disord. 2024 Aug;54(8):3155-3175. doi: 10.1007/s10803-023-06004-8. Epub 2023 May 24. Erratum in: J Autism Dev Disord. 2024 Mar;54(3):1232. doi: 10.1007/s10803-023-06098-0. PMID: 37222965.

Tuberous sclerosis complex (TSC) is a genetic condition in which typically benign tumors affect multiple organs including the brain, kidneys, heart, lungs, eyes, and skin. Many individuals with TSC also experience delay in several aspects of development, including language. 

In this structural brain MRI study, researchers examined the morphological features of cortical language regions in individuals with TSC. Participants included seven individuals with TSC and comorbid autism spectrum disorder (ASD), 13 with TSC but no ASD, 10 with ASD-only, and 29 typically developing controls.

Results suggest that comorbid ASD in TSC as well as tuber load in TSC is associated with changes in the morphometry of language regions. Authors note that future studies with larger sample sizes are needed to confirm these findings.

Rescue of impaired blood-brain barrier in tuberous sclerosis complex patient derived neurovascular unit. Brown JA, Faley SL, Judge M, Ward P, Ihrie RA, Carson R, Armstrong L, Sahin M, Wikswo JP, Ess KC, Neely MD. J Neurodev Disord. 2024 May 23;16(1):27. doi: 10.1186/s11689-024-09543-y. PMID: 38783199; PMCID: PMC11112784.

Tuberous sclerosis complex (TSC) is a genetic condition that affects many organs and can cause benign tumors in the skin, kidney, brain, heart, eyes, lungs, and other organs. The most severe symptoms—including seizures, intellectual disability, autism, and behavioral problems—result from complications in the central nervous system. Although these neurological complications are well-understood, less is known about how the genetic mutations that cause TSC might affect different components of the brain, including the blood-brain barrier.

In this study, researchers examined the function of the blood-brain barrier in TSC. The team created TSC patient-specific brain tissue models to explore how mutations in the TSC2 gene affect the blood-brain barrier.

Results show altered function of a blood-brain barrier generated from TSC2 mutant cells, which can improve with treatment of the drug rapamycin or replacement of mutant cells with astrocytes (glial cells in the brain) that do not carry the mutation. Authors note that these findings demonstrate the importance of their methods in ongoing research for TSC and other neurogenetic disorders.

Characterizing dermatologic findings among patients with PTEN hamartoma tumor syndrome: Results of a multicenter cohort study. Morgan FC, Yehia L, McDonald C, Martinez-Agosto JA, Hardan AY, Tamburro J, Sahin M, Bayart C, Eng C; Developmental Synaptopathies Consortium. J Am Acad Dermatol. 2023 Jul;89(1):90-98. doi: 10.1016/j.jaad.2022.01.045. Epub 2022 Feb 7.

Clinical Spectrum and Science Behind the Hamartomatous Polyposis Syndromes. Yehia L, Heald B, Eng C. Gastroenterology. 2023 Apr;164(5):800-811. doi: 10.1053/j.gastro.2023.01.026. Epub 2023 Jan 28.

Development and Feasibility of the Self-Report Quantified Tuberous Sclerosis Complex-Associated Neuropsychiatric Disorders Checklist (TAND-SQ). Heunis TM, Chambers N, Vanclooster S, Bissell S, Byars AW, Capal JK, Cukier S, Davis PE, de Vries MC, De Waele L, Flinn J, Gardner-Lubbe S, Gipson T, Kingswood JC, Krueger DA, Kumm AJ, Sahin M, Schoeters E, Smith C, Srivastava S, Takei M, van Eeghen AM, Waltereit R, Jansen AC, de Vries PJ. Pediatr Neurol. 2023 Oct;147:101-123. doi: 10.1016/j.pediatrneurol.2023.07.001. Epub 2023 Jul 7. PMID: 37598571

Tuberous sclerosis complex (TSC) is a genetic condition in which typically benign tumors affect multiple organs including the brain, kidneys, heart, lungs, eyes, and skin. TSC-associated neuropsychiatric disorders (TAND) include difficulties at the behavioral, psychiatric, intellectual, academic, neuropsychologic, and psychosocial levels. Although TAND are often present in individuals with TSC, they are also underidentified and undertreated.

In this study, researchers developed a self-report quantified TAND Checklist (TAND-SQ). The team conducted feasibility and acceptability testing of the TAND-SQ Checklist with 23 technical experts from the TAND consortium and 58 caregivers and individuals with TSC.

The resulting Checklist can be completed by caregivers or individuals with TSC and used to quantify TAND difficulties. Authors state that next steps include further validation of the checklist and development of a smartphone application.

Direct-to-Consumer Recruitment Methods via Traditional and Social Media to Aid in Research Accrual for Clinical Trials for Rare Diseases: Comparative Analysis Study. Applequist J, Burroughs C, Merkel PA, Rothenberg M, Trapnell B, Desnick R, Sahin M, Krischer J. J Med Internet Res. 2023 Mar 14;25:e39262. doi: 10.2196/39262.

Epilepsy Severity Is Associated With Head Circumference and Growth Rate in Infants With Tuberous Sclerosis Complex. Levine A, Davis P, Zhang B, Peters J, Filip-Dhima R, Warfield SK, Prohl A, Capal J, Krueger D, Bebin EM, Northrup H, Wu JY, Sahin M; TACERN Study Group. Pediatr Neurol. 2023 Jul;144:26-32. doi: 10.1016/j.pediatrneurol.2023.03.015. Epub 2023 Mar 29.

Genomic diversity in functionally relevant genes modifies neurodevelopmental versus neoplastic risks in individuals with germline PTEN variants. Eng C, Kim A, Yehia L. Res Sq [Preprint]. 2023 Dec 14:rs.3.rs-3734368. doi: 10.21203/rs.3.rs-3734368/v1.

In Context: A Developmental Model of Reward Processing, With Implications for Autism and Sensitive Periods. Clements CC, Ascunce K, Nelson CA. J Am Acad Child Adolesc Psychiatry. 2023 Nov;62(11):1200-1216. doi: 10.1016/j.jaac.2022.07.861. Epub 2022 Nov 3.

Longitudinal Analysis of Cancer Risk in Children and Adults With Germline PTEN Variants. Yehia L, Plitt G, Tushar AM, Joo J, Burke CA, Campbell SC, Heiden K, Jin J, Macaron C, Michener CM, Pederson HJ, Radhakrishnan K, Shin J, Tamburro J, Patil S, Eng C. JAMA Netw Open. 2023 Apr 3;6(4):e239705. doi: 10.1001/jamanetworkopen.2023.9705.

Longitudinal neurobehavioral profiles in children and young adults with PTEN hamartoma tumor syndrome and reliable methods for assessing neurobehavioral change. Busch RM, Frazier Ii TW, Sonneborn C, Hogue O, Klaas P, Srivastava S, Hardan AY, Martinez-Agosto JA, Sahin M, Eng C. J Neurodev Disord. 2023 Jan 14;15(1):3. doi: 10.1186/s11689-022-09468-4. PMID: 36641436; PMCID: PMC9840250.

PTEN hamartoma tumor syndrome (PHTS) is a spectrum of disorders caused by mutations in the PTEN gene, which typically suppresses formation of tumors. In addition to its role in cancer, PTEN plays crucial roles in brain function. Individuals with PHTS show distinct neurobehavioral profiles, suggesting primary disruption of frontal lobe systems. More severe cognitive deficits are seen in individuals with associated autism spectrum disorder (ASD) that also extend to other areas of neurobehavioral function, such as adaptive behavior and sensory deficits. In this study, researchers aimed to characterize longitudinal neurobehavioral profiles in individuals with PHTS. Ninety-two children and young adults with PHTS and/or ASD completed two to three neurobehavioral evaluations over a two-year time period. The team used spaghetti plots and linear mixed effects models to visualize individual patient profiles and group trends, examining differences in cognitive and behavioral test scores over time. Results suggest that neurobehavioral characteristics observed in individuals with PHTS remain relatively stable over time, even in those with ASD. Reliable change indices and standardized regression-based change scores were calculated and provided in an easy-to-use Excel calculator that can be used in future research to examine patient outcomes at the individual level and inform intervention strategies.

Rescue of Impaired Blood-Brain Barrier in Tuberous Sclerosis Complex Patient Derived Neurovascular Unit. Brown JA, Faley SL, Judge M, Ward P, Ihrie RA, Carson R, Armstrong L, Sahin M, Wikswo JP, Ess KC, Neely MD. bioRxiv [Preprint]. 2023 Dec 16:2023.12.15.571738. doi: 10.1101/2023.12.15.571738.

Tubers Affecting the Fusiform Face Area Are Associated with Autism Diagnosis. Cohen AL, Kroeck MR, Wall J, McManus P, Ovchinnikova A, Sahin M, Krueger DA, Bebin EM, Northrup H, Wu JY, Warfield SK, Peters JM, Fox MD; Tuberous Sclerosis Complex Autism Center of Excellence Network Study Group. Ann Neurol. 2023 Mar;93(3):577-590. doi: 10.1002/ana.26551. Epub 2022 Nov 30. PMID: 36394118; PMCID: PMC9974824.

Tuberous sclerosis complex (TSC) is a genetic condition in which typically benign tumors affect multiple organs. TSC is associated with tubers—tumors that form in the brain—and a high incidence of autism spectrum disorder (ASD).

In this study, researchers explored the relationship between location of brain tubers and ASD diagnosis. The team began by determining tuber locations for 115 TSC patients with and without ASD. Next, researchers tested for associations between ASD diagnosis and tuber burden within the whole brain and specific locations relevant to ASD. Finally, they created a map of the data to calculate the risk of ASD.  

Results show that tubers involving the right fusiform face area (FFA) were associated with a 3.7-fold increased risk of developing ASD. Authors note that this strong association highlights a potential causal mechanism for developing autism in TSC, which may help guide more general research on ASD symptoms.

Updated consensus guidelines on the management of Phelan-McDermid syndrome. Srivastava S, Sahin M, Buxbaum JD, Berry-Kravis E, Soorya LV, Thurm A, Bernstein JA, Asante-Otoo A, Bennett WE Jr, Betancur C, Brickhouse TH, Passos Bueno MR, Chopra M, Christensen CK, Cully JL, Dies K, Friedman K, Gummere B, Holder JL Jr, Jimenez-Gomez A, Kerins CA, Khan O, Kohlenberg T, Lacro RV, Levi LA, Levy T, Linnehan D, Eva L, Moshiree B, Neumeyer A, Paul SM, Phelan K, Persico A, Rapaport R, Rogers C, Saland J, Sethuram S, Shapiro J, Tarr PI, White KM, Wickstrom J, Williams KM, Winrow D, Wishart B, Kolevzon A. Am J Med Genet A. 2023 Jul 1. doi: 10.1002/ajmg.a.63312. Epub ahead of print. PMID: 37392087

Phelan–McDermid syndrome (PMS) is a genetic condition caused by the deletion of a small portion of chromosome 22 or a mutation in the SHANK3 gene resulting in a wide range of neurodevelopmental and systemic characteristics. The first guidelines for assessment and monitoring in individuals with PMS were published in 2014. Due to recent studies and investigations, knowledge about PMS has since grown significantly.

In this study, researchers aimed to update clinical management guidelines for PMS based on the latest knowledge. A taskforce of clinical experts in PMS and representatives from the parent community collaborated to produce specialty-specific guidelines—including genetics, neurology, neurodevelopment, gastroenterology, primary care, physiatry, nephrology, endocrinology, cardiology, gynecology, and dentistry.

These updated guidelines allow for improved assessment and monitoring of individuals with PMS. Authors highlight several areas for future research with plans to update the guidelines as new knowledge becomes available.

A randomized controlled trial of everolimus for neurocognitive symptoms in PTEN hamartoma tumor syndrome. Srivastava S, Jo B, Zhang B, Frazier T, Gallagher AS, Peck F, Levin AR, Mondal S, Li Z, Filip-Dhima R, Geisel G, Dies KA, Diplock A, Eng C, Hanna R, Sahin M, Hardan A; Developmental Synaptopathies Consortium. Hum Mol Genet. 2022 Oct 10;31(20):3393-3404. doi: 10.1093/hmg/ddac111. PMID: 35594551.

PTEN hamartoma tumor syndrome (PHTS) is a complex neurodevelopmental disorder characterized by overactivity of the mechanistic target of rapamycin (mTOR) pathway, which serves as a major regulator of growth. Limited data suggest that mTOR inhibitors may be therapeutic for patients with PHTS. However, no placebo-controlled studies have explored the effects of mTOR inhibition on cognition and behavior in PHTS patients with or without autism. In this study, researchers conducted a phase II, placebo-controlled trial to examine the safety and efficacy of everolimus, an mTOR inhibitor, in patients with PHTS. The team measured cognitive and behavioral outcomes in addition to biomarkers of electroencephalography (measurement of electrical activity in different parts of the brain). Results show that everolimus was well tolerated in individuals with PHTS. Electroencephalography supported engagement of the drug target in the brain, and some of the secondary (but not primary) outcome measures moved in the direction of improvement. Although this trial provides early evidence that everolimus is safe for use in patients with PHTS, authors note that further study is needed.

Distinct metabolic profiles associated with autism spectrum disorder versus cancer in individuals with germline PTEN mutations. Yehia L, Ni Y, Sadler T, Frazier TW, Eng C.. NPJ Genom Med. 2022 Mar 3;7(1):16. doi: 10.1038/s41525-022-00289-x. PMID: 35241692; PMCID: PMC8894426.

Large 22q13.3 deletions perturb peripheral transcriptomic and metabolomic profiles in Phelan-McDermid syndrome. Breen MS, Fan X, Levy T, Pollak RM, Collins B, Osman A, Tocheva AS, Sahin M, Berry-Kravis E, Soorya L, Thurm A, Powell CM, Bernstein JA, Kolevzon A, Buxbaum JD; Developmental Synaptopathies Consortium. HGG Adv. 2022 Sep 26;4(1):100145. doi: 10.1016/j.xhgg.2022.100145. eCollection 2023 Jan 12.

Strong evidence for genotype-phenotype correlations in Phelan-McDermid syndrome: results from the developmental synaptopathies consortium. Levy T, Foss-Feig JH, Betancur C, Siper PM, Trelles-Thorne MDP, Halpern D, Frank Y, Lozano R, Layton C, Britvan B, Bernstein JA, Buxbaum JD, Berry-Kravis E, Powell CM, Srivastava S, Sahin M, Soorya L, Thurm A, Kolevzon A; Developmental Synaptopathies Consortium. Hum Mol Genet. 2022 Feb 21;31(4):625-637. doi: 10.1093/hmg/ddab280. PMID: 34559195; PMCID: PMC8863417.

Visual Evoked Potential Abnormalities in Phelan-McDermid Syndrome. Siper PM, Rowe MA, Guillory SB, Rouhandeh AA, George-Jones JL, Tavassoli T, Lurie S, Zweifach J, Weissman J, Foss-Feig J, Halpern D, Trelles MP, Mulhern MS, Brittenham C, Gordon J, Zemon V, Buxbaum JD, Kolevzon A. J Am Acad Child Adolesc Psychiatry. 2022 Apr;61(4):565-574.e1. doi: 10.1016/j.jaac.2021.07.006. Epub 2021 Jul 22. PMID: 34303785; PMCID: PMC8782912.

A randomized double-blind controlled trial of everolimus in individuals with PTEN mutations: Study design and statistical considerations. Hardan AY, Jo B, Frazier TW, Klaas P, Busch RM, Dies KA, Filip-Dhima R, Snow AV, Eng C, Hanna R, Zhang B, Sahin M. Contemp Clin Trials Commun. 2021 Feb 6;21:100733. doi: 10.1016/j.conctc.2021.100733. eCollection 2021 Mar.

Balancing serendipity and reproducibility: Pluripotent stem cells as experimental systems for intellectual and developmental disorders. Anderson NC, Chen PF, Meganathan K, Afshar Saber W, Petersen AJ, Bhattacharyya A, Kroll KL, Sahin M; Cross-IDDRC Human Stem Cell Working Group. Stem Cell Reports. 2021 Jun 8;16(6):1446-1457. doi: 10.1016/j.stemcr.2021.03.025. Epub 2021 Apr 15. PMID: 33861989; PMCID: PMC8190574.

Brief Report: Role of Parent-Reported Executive Functioning and Anxiety in Insistence on Sameness in Individuals with Germline PTEN Mutations. Uljarević M, Frazier TW, Rached G, Busch RM, Klaas P, Srivastava S, Martinez-Agosto JA, Sahin M, Eng C, Hardan AY; Developmental Synaptopathies Consortium. J Autism Dev Disord. 2021 Feb 17. doi: 10.1007/s10803-021-04881-5. Online ahead of print.

Cross-level analysis of molecular and neurobehavioral function in a prospective series of patients with germline heterozygous PTEN mutations with and without autism. Frazier TW, Jaini R, Busch RM, Wolf M, Sadler T, Klaas P, Hardan AY, Martinez-Agosto JA, Sahin M, Eng C; Developmental Synaptopathies Consortium. Mol Autism. 2021 Jan 28;12(1):5. doi: 10.1186/s13229-020-00406-6.

Although PTEN is a well-established risk gene for autism spectrum disorder (ASD), little is known about how PTEN mutations and associated molecular processes influence neurobehavioral function in mutation carriers with (PTEN-ASD) and without ASD (PTEN no-ASD). In this study, researchers evaluated the influence of PTEN mutation and ASD diagnostic status on relevant pathway protein levels in peripheral blood. They also examined the associations between protein levels and neurobehavioral functions. They found that several canonical PTEN pathway molecules appear to influence the presence of ASD and modify neurobehavioral function in PTEN mutation patients. These results show that protein assays of the PTEN pathway may be useful for predicting neurobehavioral outcomes in PTEN patients. The team notes that future longitudinal analyses are needed to replicate these findings and evaluate relationships between protein and neurobehavioral measures.

Epilepsy Is Heterogeneous in Early-Life Tuberous Sclerosis Complex. Ihnen SKZ, Capal JK, Horn PS, Griffith M, Sahin M, Bebin EM, Wu JY, Northrup H, Krueger DA; TACERN study group. Pediatr Neurol. 2021 Oct;123:1-9. doi: 10.1016/j.pediatrneurol.2021.06.012. Epub 2021 Jul 6.

Tuberous sclerosis complex (TSC) is a multi-system genetic disease that causes benign tumors to grow in vital organs including the brain, kidneys, heart, eyes, lungs, and skin. Epilepsy in TSC typically presents with early onset, multiple seizure types, and intractability. However, this varies among individual patients. In this study, researchers aimed to define epilepsy profiles in the TSC population. The team prospectively collected detailed individual data on seizure characteristics in children aged zero to 36 months. Caregivers kept daily seizure diaries, including onset and daily counts, for each seizure type. Researchers then compared developmental outcomes at 36 months between subgroups. Epilepsy was seen in 79 percent of participants. Hierarchical clustering based on six metrics of seizure burden—age of onset, total seizures, ratio of seizure days to nonseizure days, seizures per seizure day, and worst seven- and 30-day stretches—revealed two distinct groups with broadly favorable and unfavorable epilepsy profiles. Within each group, subpopulations showed clinically meaningful differences in seizure burden, and groups with higher burden had worse developmental outcomes at 36 months. These findings indicate that early and aggressive treatments for epilepsy in TSC may be best leveraged by targeting specific subgroups based on phenotype severity.

Harnessing rare variants in neuropsychiatric and neurodevelopment disorders-a Keystone Symposia report. Cable J, Purcell RH, Robinson E, Vorstman JAS, Chung WK, Constantino JN, Sanders SJ, Sahin M, Dolmetsch RE, Shah BM, Thurm A, Martin CL, Bearden CE, Mulle JG. Ann N Y Acad Sci. 2021 Dec;1506(1):5-17. doi: 10.1111/nyas.14658. Epub 2021 Aug 2. PMID: 34342000; PMCID: PMC8688183.

Neurodevelopmental neuropsychiatric disorders—such as autism spectrum disorder and schizophrenia—have strong genetic risk components, but researchers are still deciphering the underlying mechanisms. Rare variants could help us better understand the biological mechanisms for more common idiopathic diseases and reveal new therapeutic targets. This review summarizes insights from the 2021 Keystone eSymposium "Neuropsychiatric and Neurodevelopmental Disorders: Harnessing Rare Variants.” Experts describe progress in genomic discovery and human phenotyping, as well as raise consistent issues.

Interplay Between Class II HLA Genotypes and the Microbiome and Immune Phenotypes in Individuals With PTEN Hamartoma Tumor Syndrome. Jia M, Sangwan N, Tzeng A, Eng C.. JCO Precis Oncol. 2021 Feb 9;5:PO.20.00374. doi: 10.1200/PO.20.00374. PMID: 34250407; PMCID: PMC8232567.

Multivariate data analysis identifies natural clusters of Tuberous Sclerosis Complex Associated Neuropsychiatric Disorders (TAND). de Vries PJ, Leclezio L, Gardner-Lubbe S, Krueger D, Sahin M, Sparagana S, De Waele L, Jansen A. Orphanet J Rare Dis. 2021 Oct 24;16(1):447. doi: 10.1186/s13023-021-02076-w. PMID: 34689816; PMCID: PMC8543869.

Parent-reported measure of repetitive behavior in Phelan-McDermid syndrome. Srivastava S, Condy E, Carmody E, Filip-Dhima R, Kapur K, Bernstein JA, Berry-Kravis E, Powell CM, Soorya L, Thurm A, Buxbaum JD, Sahin M, Kolevzon AL; Developmental Synaptopathies Consortium. J Neurodev Disord. 2021 Nov 5;13(1):53. doi: 10.1186/s11689-021-09398-7. PMID: 34740315; PMCID: PMC8570010.

Repetitive behaviors are often seen in individuals with autism spectrum disorder as well as intellectual disability. Due to the association of these diagnoses with Phelan-McDermid syndrome (PMS), researchers characterized the severity and profile of repetitive behaviors in PMS relative to previously published scores in other neurodevelopmental disorders. The team used the Repetitive Behavior Scale-Revised (RBS-R) as a parent-report measure of what was collected as part of a natural history study of PMS through the Developmental Synaptopathies Consortium (DSC). Researchers demonstrated that individuals with PMS in this cohort had lower rates of repetitive behaviors compared to previous studies of individuals with autism spectrum disorder and Fragile X syndrome. They also showed that more severe motor repetitive behaviors (e.g., body rocking, finger movements) were associated with lower IQ scores in PMS, but this relationship was not present between IQ and other types of repetitive behaviors. These findings indicate that repetitive behaviors may be milder overall in PMS compared to previous studies characterizing autism spectrum disorder and other genetic conditions. Stereotyped motor behaviors may be related to level of cognitive functioning, and not an autism spectrum disorder diagnosis, in PMS. Authors note the need to better understand these findings by continuing to study repetitive behaviors in PMS using objective measures.

Profile of Autism Spectrum Disorder in Tuberous Sclerosis Complex: Results from a Longitudinal, Prospective, Multisite Study. Capal JK, Williams ME, Pearson DA, Kissinger R, Horn PS, Murray D, Currans K, Kent B, Bebin M, Northrup H, Wu JY, Sahin M, Krueger DA; TACERN Study Group. Ann Neurol. 2021 Dec;90(6):874-886. doi: 10.1002/ana.26249. Epub 2021 Oct 29. PMID: 34668231; PMCID: PMC8639652.

Tuberous Sclerosis Complex (TSC) is a rare genetic disorder that causes noncancerous tumors to develop in many parts of the body. It is highly associated with autism spectrum disorder (ASD). Researchers seeking to characterize autistic features in young children with TSC evaluated 138 children from ages 3 to 36 months. They used both development and autism-specific assessments. One in four children in the study had been diagnosed with ASD by 36 months. Many individuals with TSC without an autism diagnosis also exhibited a range of autistic behaviors that were below the diagnostic threshold. Study authors report a broader autism phenotype (set of characteristics) that can be identified in young children with TSC, offering an opportunity for early, targeted treatments.

Psychiatric Characteristics Across Individuals With PTEN Mutations. Steele M, Uljarević M, Rached G, Frazier TW, Phillips JM, Libove RA, Busch RM, Klaas P, Martinez-Agosto JA, Srivastava S, Eng C, Sahin M, Hardan AY. Front Psychiatry. 2021 Aug 17;12:672070. doi: 10.3389/fpsyt.2021.672070. eCollection 2021.

Shifted phase of EEG cross-frequency coupling in individuals with Phelan-McDermid syndrome. Mariscal MG, Berry-Kravis E, Buxbaum JD, Ethridge LE, Filip-Dhima R, Foss-Feig JH, Kolevzon A, Modi ME, Mosconi MW, Nelson CA, Powell CM, Siper PM, Soorya L, Thaliath A, Thurm A, Zhang B, Sahin M, Levin AR; Developmental Synaptopathies Consortium. Mol Autism. 2021 Apr 28;12(1):29. doi: 10.1186/s13229-020-00411-9.

Social visual attentional engagement and memory in Phelan-McDermid syndrome and autism spectrum disorder: a pilot eye tracking study. Guillory SB, Baskett VZ, Grosman HE, McLaughlin CS, Isenstein EL, Wilkinson E, Weissman J, Britvan B, Trelles MP, Halpern DB, Buxbaum JD, Siper PM, Wang AT, Kolevzon A, Foss-Feig JH. J Neurodev Disord. 2021 Dec 4;13(1):58. doi: 10.1186/s11689-021-09400-2. PMID: 34863106.

Phelan-McDermid Syndrome (PMS) is a rare genetic disorder characterized by intellectual disability and motor delays. It is also one of the most common genetic causes of autism spectrum disorder (ASD). Social deficits are a core feature of ASD. In order to characterize social attention and recognition memory, researchers tested a group of patients with PMS and another group of patients with idiopathic (no cause identified) ASD on a visual paired-comparison task. They analyzed the behavior of test subjects looking at a novel image versus a previously viewed, familiar image. Researchers found differences in attention and memory for social stimuli in the PMS group v. the idiopathic ASD group. Study authors say that these unique patterns could both clarify underlying mechanistic alterations and inform treatment targets for PMS. They could also help stratify individuals with idiopathic ASD and potentially apply knowledge gained in PMS to those individuals.

Toward better characterization of restricted and repetitive behaviors in individuals with germline heterozygous PTEN mutations. Uljarević M, Frazier TW, Rached G, Busch RM, Klaas P, Srivastava S, Martinez-Agosto JA, Sahin M, Eng C, Hardan AY; Developmental Synaptopathies Consortium. Am J Med Genet A. 2021 Aug 23. doi: 10.1002/ajmg.a.62458. Online ahead of print.

Mutations in the PTEN gene are an important genetic risk factor for autism spectrum disorder (ASD). PTEN mutations are identified in 2% of all ASD cases and 17-20% of cases with both ASD and macrocephaly (larger than typical head size). Restricted and repetitive behaviors (RRB) are a core diagnostic symptom of ASD and one of the earlier predictors of a subsequent ASD diagnosis. RRBs include repetitive motor behaviors (RMB), insistence on sameness (IS), and circumscribed interests (CI). Researchers believe these symptom domains, which have a significant negative impact on affected individuals and their families, likely have distinct mechanisms and might therefore require different treatments. Seeking to develop a more nuanced understanding of RRB in individuals with PTEN mutations, researchers compared RMB, IS, and CI symptoms captured by two different measures across three groups: 38 individuals with PTEN mutations with ASD, 23 with PTEN mutations without ASD, and 25 with ASD and macrocephaly but without PTEN mutations. After adjusting for age and full-scale intelligence quotient (FSIQ) scores, the researchers found that differences between the three study groups were not statistically significant. However, all three symptom domains showed distinct association patterns with sex, age, and FSIQ. Study authors conclude that their findings highlight the importance of comprehensively assessing RRB in people with PTEN mutations. Their findings further support the hypothesis that RMB, IS, and CI are indeed distinct RRB domains that might, therefore, require different treatment approaches in this population. They recommend that future studies are needed to further understand mechanisms behind specific RRB subdomains and inform most optimal strategies for individuation of treatment options. This research offers the largest, most comprehensive comparison of distinct RRB domains in individuals with PTEN mutations to date.

Tuber Locations Associated with Infantile Spasms Map to a Common Brain Network. Cohen AL, Mulder BPF, Prohl AK, Soussand L, Davis P, Kroeck MR, McManus P, Gholipour A, Scherrer B, Bebin EM, Wu JY, Northrup H, Krueger DA, Sahin M, Warfield SK, Fox MD, Peters JM; Tuberous Sclerosis Complex Autism Center of Excellence Network Study Group. Ann Neurol. 2021 Apr;89(4):726-739. doi: 10.1002/ana.26015. Epub 2021 Jan 21.

A novel approach to conducting clinical trials in the community setting: utilizing patient-driven platforms and social media to drive web-based patient recruitment. Applequist J, Burroughs C, Ramirez A Jr, Merkel PA, Rothenberg ME, Trapnell B, Desnick RJ, Sahin M, Krischer JP. BMC Med Res Methodol. 2020 Mar 13;20(1):58. doi: 10.1186/s12874-020-00926-y.

Copy Number Variation and Clinical Outcomes in Patients With Germline PTEN Mutations. Yehia L, Seyfi M, Niestroj LM, Padmanabhan R, Ni Y, Frazier TW, Lal D, Eng C. JAMA Netw Open. 2020 Jan 3;3(1):e1920415. doi: 10.1001/jamanetworkopen.2019.20415.

Diffusion Tensor Imaging Abnormalities in the Uncinate Fasciculus and Inferior Longitudinal Fasciculus in Phelan-McDermid Syndrome. Bassell J, Srivastava S, Prohl AK, Scherrer B, Kapur K, Filip-Dhima R, Berry-Kravis E, Soorya L, Thurm A, Powell CM, Bernstein JA, Buxbaum JD, Kolevzon A, Warfield SK, Sahin M; Developmental Synaptopathies Consortium. Pediatr Neurol. 2020 May;106:24-31. doi: 10.1016/j.pediatrneurol.2020.01.006. Epub 2020 Jan 31.

Editorial: Biomarkers to Enable Therapeutics Development in Neurodevelopmental Disorders. Sahin M, Sweeney JA, Jones SR. Front Integr Neurosci. 2020 Nov 12;14:616641. doi: 10.3389/fnint.2020.616641. PMID: 33262695; PMCID: PMC7686575.

Epilepsy Risk Prediction Model for Patients With Tuberous Sclerosis Complex. Farach LS, Richard MA, Lupo PJ, Sahin M, Krueger DA, Wu JY, Bebin EM, Au KS, Northrup H; TACERN Study Group. Pediatr Neurol. 2020 Dec;113:46-50. doi: 10.1016/j.pediatrneurol.2020.07.015. Epub 2020 Jul 29.

LEARNING TO DETECT BRAIN LESIONS FROM NOISY ANNOTATIONS. Karimi D, Peters JM, Ouaalam A, Prabhu SP, Sahin M, Krueger DA, Kolevzon A, Eng C, Warfield SK, Gholipour A. Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1910-1914. doi: 10.1109/isbi45749.2020.9098599. Epub 2020 May 22.

Language predictors of autism spectrum disorder in young children with tuberous sclerosis complex. Schoenberger A, Capal JK, Ondracek A, Horn PS, Murray D, Byars AW, Pearson DA, Williams ME, Bebin M, Northrup H, Wu JY, Sahin M, Krueger DA. Epilepsy Behav. 2020 Feb;103(Pt A):106844. doi: 10.1016/j.yebeh.2019.106844. Epub 2019 Dec 18.

Lesion-Constrained Electrical Source Imaging: A Novel Approach in Epilepsy Surgery for Tuberous Sclerosis Complex. Peters JM, Hyde DE, Chu CJ, Boom M, Scherrer B, Madsen JR, Stone SS, Ouaalam H, Prabhu SP, Sahin M, Warfield SK. J Clin Neurophysiol. 2020 Jan;37(1):79-86. doi: 10.1097/WNP.0000000000000615.

PTEN hamartoma tumour syndrome: what happens when there is no PTEN germline mutation?. Yehia L, Eng C. Hum Mol Genet. 2020 Oct 20;29(R2):R150-R157. doi: 10.1093/hmg/ddaa127.

More than 400 hereditary cancer syndromes have been described to date and account for 5-10% of all cancers. PTEN hamartoma tumour syndrome (PHTS) is an umbrella term for subsets of four syndromes associated with germline (inherited) PTEN mutations. However, many patients with phenotypes similar to those in PHTS do not carry germline PTEN mutations. This paper reviews gene discovery efforts over the last decade to identify alterations in cancer-predisposing genes in order to facilitate gene-informed molecular diagnosis, cancer risk assessment, and gene-specific clinical management. Authors conclude that validating these discoveries is critical to bringing these patients specific gene-informed risk assessment and subsequent management.

Polymicrogyria is Associated With Pathogenic Variants in PTEN. Shao DD, Achkar CM, Lai A, Srivastava S, Doan RN, Rodan LH, Chen AY; Brain Development Study Group, Poduri A, Yang E, Walsh CA. Ann Neurol. 2020 Dec;88(6):1153-1164. doi: 10.1002/ana.25904. Epub 2020 Oct 8.

Psychiatric illness and regression in individuals with Phelan-McDermid syndrome. Kohlenberg TM, Trelles MP, McLarney B, Betancur C, Thurm A, Kolevzon A. J Neurodev Disord. 2020 Feb 12;12(1):7. doi: 10.1186/s11689-020-9309-6.

Psychometric Study of the Social Responsiveness Scale in Phelan-McDermid Syndrome. Gergoudis K, Weinberg A, Templin J, Farmer C, Durkin A, Weissman J, Siper P, Foss-Feig J, Del Pilar Trelles M, Bernstein JA, Buxbaum JD, Berry-Kravis E, Powell CM, Sahin M, Soorya L, Thurm A, Kolevzon A; Developmental Synaptopathies Consortium. Autism Res. 2020 Aug;13(8):1383-1396. doi: 10.1002/aur.2299. Epub 2020 May 14.

Scalp EEG interictal high frequency oscillations as an objective biomarker of infantile spasms. Nariai H, Hussain SA, Bernardo D, Motoi H, Sonoda M, Kuroda N, Asano E, Nguyen JC, Elashoff D, Sankar R, Bragin A, Staba RJ, Wu JY. Clin Neurophysiol. 2020 Nov;131(11):2527-2536. doi: 10.1016/j.clinph.2020.08.013. Epub 2020 Sep 3.

The Connectivity Fingerprint of the Fusiform Gyrus Captures the Risk of Developing Autism in Infants with Tuberous Sclerosis Complex. Scherrer B, Prohl AK, Taquet M, Kapur K, Peters JM, Tomas-Fernandez X, Davis PE, M Bebin E, Krueger DA, Northrup H, Y Wu J, Sahin M, Warfield SK. Cereb Cortex. 2020 Apr 14;30(4):2199-2214. doi: 10.1093/cercor/bhz233.

A unified circuit for social behavior. Modi ME, Sahin M. Neurobiol Learn Mem. 2019 Nov;165:106920. doi: 10.1016/j.nlm.2018.08.010. Epub 2018 Aug 24.

Conformational Dynamics and Allosteric Regulation Landscapes of Germline PTEN Mutations Associated with Autism Compared to Those Associated with Cancer. Smith IN, Thacker S, Seyfi M, Cheng F, Eng C. Am J Hum Genet. 2019 May 2;104(5):861-878. doi: 10.1016/j.ajhg.2019.03.009. Epub 2019 Apr 18.

Distinct Alterations in Tricarboxylic Acid Cycle Metabolites Associate with Cancer and Autism Phenotypes in Cowden Syndrome and Bannayan-Riley-Ruvalcaba Syndrome. Yehia L, Ni Y, Feng F, Seyfi M, Sadler T, Frazier TW, Eng C. Am J Hum Genet. 2019 Oct 3;105(4):813-821. doi: 10.1016/j.ajhg.2019.09.004. Epub 2019 Sep 26.

Dynamics and structural stability effects of germline PTEN mutations associated with cancer versus autism phenotypes. Smith IN, Thacker S, Jaini R, Eng C. J Biomol Struct Dyn. 2019 Apr;37(7):1766-1782. doi: 10.1080/07391102.2018.1465854. Epub 2018 May 14.

Incontinence in Phelan-McDermid Syndrome. Witmer C, Mattingly A, DʼSouza P, Thurm A, Hadigan C. J Pediatr Gastroenterol Nutr. 2019 Aug;69(2):e39-e42. doi: 10.1097/MPG.0000000000002342.

Increased electroencephalography connectivity precedes epileptic spasm onset in infants with tuberous sclerosis complex. Davis PE, Kapur K, Filip-Dhima R, Trowbridge SK, Little E, Wilson A, Leuchter A, Bebin EM, Krueger D, Northrup H, Wu JY, Sahin M, Peters JM; Tuberous Sclerosis Autism Centers of Excellence Research Network. Epilepsia. 2019 Aug;60(8):1721-1732. doi: 10.1111/epi.16284. Epub 2019 Jul 12.

Longitudinal Effects of Everolimus on White Matter Diffusion in Tuberous Sclerosis Complex. Peters JM, Prohl A, Kapur K, Nath A, Scherrer B, Clancy S, Prabhu SP, Sahin M, Franz DN, Warfield SK, Krueger DA. Pediatr Neurol. 2019 Jan;90:24-30. doi: 10.1016/j.pediatrneurol.2018.10.005. Epub 2018 Oct 18.

Motion-robust diffusion compartment imaging using simultaneous multi-slice acquisition. Marami B, Scherrer B, Khan S, Afacan O, Prabhu SP, Sahin M, Warfield SK, Gholipour A. Magn Reson Med. 2019 May;81(5):3314-3329. doi: 10.1002/mrm.27613. Epub 2018 Nov 16.

Neurobehavioral phenotype of autism spectrum disorder associated with germline heterozygous mutations in PTEN. Busch RM, Srivastava S, Hogue O, Frazier TW, Klaas P, Hardan A, Martinez-Agosto JA, Sahin M, Eng C; Developmental Synaptopathies Consortium. Transl Psychiatry. 2019 Oct 8;9(1):253. doi: 10.1038/s41398-019-0588-1.

Neuropsychiatric decompensation in adolescents and adults with Phelan-McDermid syndrome: a systematic review of the literature. Kolevzon A, Delaby E, Berry-Kravis E, Buxbaum JD, Betancur C. Mol Autism. 2019 Dec 24;10:50. doi: 10.1186/s13229-019-0291-3. eCollection 2019.

PTEN-opathies: from biological insights to evidence-based precision medicine. Yehia L, Ngeow J, Eng C. J Clin Invest. 2019 Feb 1;129(2):452-464. doi: 10.1172/JCI121277. Epub 2019 Jan 7.

The tumor suppressor phosphatase and tensin homolog (PTEN) classically counteracts the PI3K/AKT/mTOR signaling cascade. Germline pathogenic PTEN mutations cause PTEN hamartoma tumor syndrome (PHTS), featuring various benign and malignant tumors, as well as neurodevelopmental disorders such as autism spectrum disorder. Germline and somatic mosaic mutations in genes encoding components of the PI3K/AKT/mTOR pathway downstream of PTEN predispose to syndromes with partially overlapping clinical features, termed the "PTEN-opathies." Experimental models of PTEN pathway disruption uncover the molecular and cellular processes influencing clinical phenotypic manifestations. Such insights not only teach us about biological mechanisms in states of health and disease, but also enable more accurate gene-informed cancer risk assessment, medical management, and targeted therapeutics. Hence, the PTEN-opathies serve as a prototype for bedside to bench, and back to the bedside, practice of evidence-based precision medicine.

Prospective observational study: Fast ripple localization delineates the epileptogenic zone. Nariai H, Hussain SA, Bernardo D, Fallah A, Murata KK, Nguyen JC, Rajaraman RR, Rao LM, Matsumoto JH, Lerner JT, Salamon N, Elashoff D, Sankar R, Wu JY. Clin Neurophysiol. 2019 Nov;130(11):2144-2152. doi: 10.1016/j.clinph.2019.08.026. Epub 2019 Sep 17.

Resting-State fMRI Networks in Children with Tuberous Sclerosis Complex. Ahtam B, Dehaes M, Sliva DD, Peters JM, Krueger DA, Bebin EM, Northrup H, Wu JY, Warfield SK, Sahin M, Grant PE; TACERN Study Group. J Neuroimaging. 2019 Nov;29(6):750-759. doi: 10.1111/jon.12653. Epub 2019 Jul 14.

Tuberous Sclerosis Complex Genotypes and Developmental Phenotype. Farach LS, Pearson DA, Woodhouse JP, Schraw JM, Sahin M, Krueger DA, Wu JY, Bebin EM, Lupo PJ, Au KS, Northrup H; TACERN Study Group. Pediatr Neurol. 2019 Jul;96:58-63. doi: 10.1016/j.pediatrneurol.2019.03.003. Epub 2019 Mar 13.

Volumetric Analysis of the Basal Ganglia and Cerebellar Structures in Patients with Phelan-McDermid Syndrome. Srivastava S, Scherrer B, Prohl AK, Filip-Dhima R, Kapur K, Kolevzon A, Buxbaum JD, Berry-Kravis E, Soorya L, Thurm A, Powell CM, Bernstein JA, Warfield SK, Sahin M; Developmental Synaptopathies Consortium. Pediatr Neurol. 2019 Jan;90:37-43. doi: 10.1016/j.pediatrneurol.2018.09.008. Epub 2018 Sep 21.

White matter mean diffusivity correlates with myelination in tuberous sclerosis complex. Peters JM, Struyven RR, Prohl AK, Vasung L, Stajduhar A, Taquet M, Bushman JJ, Lidov H, Singh JM, Scherrer B, Madsen JR, Prabhu SP, Sahin M, Afacan O, Warfield SK. Ann Clin Transl Neurol. 2019 Jul;6(7):1178-1190. doi: 10.1002/acn3.793. Epub 2019 Jun 23.

A clinical update on tuberous sclerosis complex-associated neuropsychiatric disorders (TAND). de Vries PJ, Wilde L, de Vries MC, Moavero R, Pearson DA, Curatolo P. Am J Med Genet C Semin Med Genet. 2018 Sep;178(3):309-320. doi: 10.1002/ajmg.c.31637. Epub 2018 Aug 16.

Assessing the validity of the approximation of diffusion-weighted-MRI signals from crossing fascicles by sums of signals from single fascicles. Rensonnet G, Scherrer B, Warfield SK, Macq B, Taquet M. Magn Reson Med. 2018 Apr;79(4):2332-2345. doi: 10.1002/mrm.26832. Epub 2017 Jul 16.

Corpus Callosum White Matter Diffusivity Reflects Cumulative Neurological Comorbidity in Tuberous Sclerosis Complex. Baumer FM, Peters JM, Clancy S, Prohl AK, Prabhu SP, Scherrer B, Jansen FE, Braun KPJ, Sahin M, Stamm A, Warfield SK. Cereb Cortex. 2018 Oct 1;28(10):3665-3672. doi: 10.1093/cercor/bhx247.

Delineation of the genetic and clinical spectrum of Phelan-McDermid syndrome caused by SHANK3 point mutations. De Rubeis S, Siper PM, Durkin A, Weissman J, Muratet F, Halpern D, Trelles MDP, Frank Y, Lozano R, Wang AT, Holder JL Jr, Betancur C, Buxbaum JD, Kolevzon A. Mol Autism. 2018 Apr 27;9:31. doi: 10.1186/s13229-018-0205-9. eCollection 2018.

Development and Validation of Objective and Quantitative Eye Tracking-Based Measures of Autism Risk and Symptom Levels. Frazier TW, Klingemier EW, Parikh S, Speer L, Strauss MS, Eng C, Hardan AY, Youngstrom EA. J Am Acad Child Adolesc Psychiatry. 2018 Nov;57(11):858-866. doi: 10.1016/j.jaac.2018.06.023. Epub 2018 Sep 13.

Dynamical features in fetal and postnatal zinc-copper metabolic cycles predict the emergence of autism spectrum disorder. Curtin P, Austin C, Curtin A, Gennings C, Arora M; (for the Emergent Dynamical Systems Group), Tammimies K, Willfors C, Berggren S, Siper P, Rai D, Meyering K, Kolevzon A, Mollon J, David AS, Lewis G, Zammit S, Heilbrun L, Palmer RF, Wright RO, Bölte S, Reichenberg A. Sci Adv. 2018 May 30;4(5):eaat1293. doi: 10.1126/sciadv.aat1293. eCollection 2018 May.

Framework for assessing individuals with rare genetic disorders associated with profound intellectual and multiple disabilities (PIMD): the example of Phelan McDermid Syndrome. Soorya L, Leon J, Trelles MP, Thurm A. Clin Neuropsychol. 2018 Aug-Oct;32(7):1226-1255. doi: 10.1080/13854046.2017.1413211. Epub 2017 Dec 21.

Genetics, genomics, and genotype-phenotype correlations of TSC: Insights for clinical practice. Peron A, Au KS, Northrup H. Am J Med Genet C Semin Med Genet. 2018 Sep;178(3):281-290. doi: 10.1002/ajmg.c.31651. Epub 2018 Sep 26.

High vigabatrin dosage is associated with lower risk of infantile spasms relapse among children with tuberous sclerosis complex. Hussain SA, Schmid E, Peters JM, Goyal M, Bebin EM, Northrup H, Sahin M, Krueger DA, Wu JY; Tuberous Sclerosis Complex Autism Center of Excellence Network. Epilepsy Res. 2018 Dec;148:1-7. doi: 10.1016/j.eplepsyres.2018.09.016. Epub 2018 Oct 2.

Interrater reliability in visual identification of interictal high-frequency oscillations on electrocorticography and scalp EEG. Nariai H, Wu JY, Bernardo D, Fallah A, Sankar R, Hussain SA. Epilepsia Open. 2018 Nov 2;3(Suppl Suppl 2):127-132. doi: 10.1002/epi4.12266. eCollection 2018 Dec.

Prospective longitudinal overnight video-EEG evaluation in Phelan-McDermid Syndrome. Khan OI, Zhou X, Leon J, Kessler R, Gaughan T, D'Souza P, Gropman A, Cohen N, Rennert O, Buckley A, Inati S, Thurm A. Epilepsy Behav. 2018 Mar;80:312-320. doi: 10.1016/j.yebeh.2017.11.034. Epub 2018 Feb 3.

Removing high-frequency oscillations: A prospective multicenter study on seizure outcome.. Jacobs J, Wu JY, Perucca P, Zelmann R, Mader M, Dubeau F, Mathern GW, Schulze-Bonhage A, Gotman J. Neurology. 2018 Sep 11;91(11):e1040-e1052. doi: 10.1212/WNL.0000000000006158. Epub 2018 Aug 17. PMID: 30120133; PMCID:PMC6140372

The Way Forward for Mechanism-Based Therapeutics in Genetically Defined Neurodevelopmental Disorders. Modi ME, Sahin M. Clin Pharmacol Ther. 2018 Oct;104(4):603-606. doi: 10.1002/cpt.1181. Epub 2018 Aug 12.

The expanding phenotype of RNU4ATAC pathogenic variants to Lowry Wood syndrome. Farach LS, Little ME, Duker AL, Logan CV, Jackson A, Hecht JT, Bober M. Am J Med Genet A. 2018 Feb;176(2):465-469. doi: 10.1002/ajmg.a.38581. Epub 2017 Dec 19.

The microbiome in PTEN hamartoma tumor syndrome. Byrd V, Getz T, Padmanabhan R, Arora H, Eng C. Endocr Relat Cancer. 2017. PMID: 29233840.

Tuberous sclerosis complex. Peron A, Northrup H. Am J Med Genet C Semin Med Genet. 2018 Sep;178(3):274-277. doi: 10.1002/ajmg.c.31657. Epub 2018 Oct 16.

Vigabatrin for Epileptic Spasms and Tonic Seizures in Tuberous Sclerosis Complex. van der Poest Clement EA, Sahin M, Peters JM. J Child Neurol. 2018 Jul;33(8):519-524. doi: 10.1177/0883073818768309. Epub 2018 Apr 24.

Visual and semi-automatic non-invasive detection of interictal fast ripples: A potential biomarker of epilepsy in children with tuberous sclerosis complex. Bernardo D, Nariai H, Hussain SA, Sankar R, Salamon N, Krueger DA, Sahin M, Northrup H, Bebin EM, Wu JY; UCLA Pediatric Epilepsy Group; TACERN Study Group. Clin Neurophysiol. 2018 Jul;129(7):1458-1466. doi: 10.1016/j.clinph.2018.03.010. Epub 2018 Apr 3.

A Meta-Analysis of Gaze Differences to Social and Nonsocial Information Between Individuals With and Without Autism. Frazier TW, Strauss M, Klingemier EW, Zetzer EE, Hardan AY, Eng C, Youngstrom EA. J Am Acad Child Adolesc Psychiatry. 2017 Jul;56(7):546-555. doi: 10.1016/j.jaac.2017.05.005. Epub 2017 May 11.

A clinician-administered observation and corresponding caregiver interview capturing DSM-5 sensory reactivity symptoms in children with ASD. Siper PM, Kolevzon A, Wang AT, Buxbaum JD, Tavassoli T. Autism Res. 2017 Jun;10(6):1133-1140. doi: 10.1002/aur.1750. Epub 2017 Mar 11.

Autism spectrum disorder and epileptic encephalopathy: common causes, many questions. Srivastava S, Sahin M. J Neurodev Disord. 2017 Jun 23;9:23. doi: 10.1186/s11689-017-9202-0. PMID: 28649286; PMCID: PMC5481888.

Influence of seizures on early development in tuberous sclerosis complex. Capal JK, Bernardino-Cuesta B, Horn PS, et al. Epilepsy Behav. 2017;70(Pt A):245-252. PMID: 28457992, PMCID: PMC5497719.

Intraoperative fast ripples independently predict postsurgical epilepsy outcome: Comparison with other electrocorticographic phenomena. Hussain SA, Mathern GW, Hung P, Weng J, Sankar R, Wu JY. Epilepsy Res. 2017;135:79-86. PMID: 28644979, PMCID: PMC5568451.

Language ENvironment Analysis (LENA) in Phelan-McDermid Syndrome: Validity and Suggestions for Use in Minimally Verbal Children with Autism Spectrum Disorder. Rankine J, Li E, Lurie S, Rieger H, Fourie E, Siper PM, Wang AT, Buxbaum JD, Kolevzon A. J Autism Dev Disord. 2017 Jun;47(6):1605-1617. doi: 10.1007/s10803-017-3082-8.

Presentation and Diagnosis of Tuberous Sclerosis Complex in Infants. Davis PE, Filip-Dhima R, Sideridis G, Peters JM, Au KS, Northrup H, Bebin EM, Wu JY, Krueger D, Sahin M; Tuberous Sclerosis Complex Autism Center of Excellence Research Network. Pediatrics. 2017;140(6). PMID: 29101226, PMCID: PMC5703775.

The genomic landscape of tuberous sclerosis complex. Martin KR, Zhou W, Bowman MJ, Shih J, Au KS, Dittenhafer-Reed KE, Sisson KA, Koeman J, Weisenberger DJ, Cottingham SL, DeRoos ST, Devinsky O, Winn ME, Cherniack AD, Shen H, Northrup H, Krueger DA, MacKeigan JP. Nat Commun. 2017 Jun 15;8:15816. doi: 10.1038/ncomms15816.

Utility of the Autism Observation Scale for Infants in Early Identification of Autism in Tuberous Sclerosis Complex. Capal JK, Horn PS, Murray DS, Byars AW, Bing NM, Kent B, Bucher LA, Williams ME, O'Kelley S, Pearson DA, Sahin M, Krueger DA; TACERN Study Group. Pediatr Neurol. 2017;75:80-86. PMID: 28844798, PMCID: PMC5610103.

Advances and Future Directions for Tuberous Sclerosis Complex Research: Recommendations From the 2015 Strategic Planning Conference. Sahin M, Henske EP, Manning BD, Ess KC, Bissler JJ, Klann E, Kwiatkowski DJ, Roberds SL, Silva AJ, Hillaire-Clarke CS, Young LR, Zervas M, Mamounas LA; Tuberous Sclerosis Complex Working Group to Update the Research Plan. Pediatr Neurol. 2016 Jul;60:1-12. doi: 10.1016/j.pediatrneurol.2016.03.015. Epub 2016 Apr 2. PMID: 27267556; PMCID: PMC4921275.

Altered Structural Brain Networks in Tuberous Sclerosis Complex. Im K, Ahtam B, Haehn D, Peters JM, Warfield SK, Sahin M, Ellen Grant P. Cereb Cortex. 2016 May;26(5):2046-58. doi: 10.1093/cercor/bhv026. Epub 2015 Mar 5. PMID: 25750257; PMCID: PMC4830286.

Characterizing brain tissue by assessment of the distribution of anisotropic microstructural environments in diffusion-compartment imaging (DIAMOND). Scherrer B, Schwartzman A, Taquet M, Sahin M, Prabhu SP, Warfield SK. Magn Reson Med. Sep 12 2015. PMID: 26362832.

Congenital disorders of autophagy: an emerging novel class of inborn errors of neuro-metabolism. Ebrahimi-Fakhari D, Saffari A, Wahlster L, Lu J, Byrne S, Hoffmann GF, Jungbluth H, Sahin M. Brain. 2016 Feb;139(Pt 2):317-37. doi: 10.1093/brain/awv371. Epub 2015 Dec 29. PMID: 26715604; PMCID: PMC5841365.

Development and psychometric evaluation of a psychosocial quality-of-life questionnaire for individuals with autism and related developmental disorders. Markowitz LA, Reyes C, Embacher RA, Speer LL, Roizen N, Frazier TW. Autism. 2016 Oct;20(7):832-44. doi: 10.1177/1362361315611382. Epub 2015 Dec 10.

Development of an Objective Autism Risk Index Using Remote Eye Tracking. Frazier TW, Klingemier EW, Beukemann M, Speer L, Markowitz L, Parikh S, Wexberg S, Giuliano K, Schulte E, Delahunty C, Ahuja V, Eng C, Manos MJ, Hardan AY, Youngstrom EA, Strauss MS. J Am Acad Child Adolesc Psychiatry. Apr 2016;55(4):301-309. PMID: 27015721, PMCID: PMC4808563.

Editorial: Essential Pathways and Circuits of Autism Pathogenesis. Dölen G, Sahin M. Front Neurosci. 2016 Apr 26;10:182. doi: 10.3389/fnins.2016.00182. eCollection 2016.

Long-term treatment of epilepsy with everolimus in tuberous sclerosis. Krueger DA, Wilfong AA, Mays M, Talley CM, Agricola K, Tudor C, Capal J, Holland-Bouley K, Franz DN. Neurology. 2016 Dec 6;87(23):2408-2415. doi: 10.1212/WNL.0000000000003400. Epub 2016 Nov 4. PMID: 27815402; PMCID: PMC5177677.

Motion-Robust Diffusion-Weighted Brain MRI Reconstruction Through Slice-Level Registration-Based Motion Tracking. Marami B, Scherrer B, Afacan O, Erem B, Warfield SK, Gholipour A. IEEE Trans Med Imaging. 2016;35(10):2258-2269. PMID: 27834639, PMCID: PMC5108524.

Siper PM. Siper PM, Zemon V, Gordon J, et al. PLoS ONE. 2016;11(10):e0164422. PMID: 27716799, PMCID: PMC5055293.

Somatic overgrowth disorders of the PI3K/AKT/mTOR pathway & therapeutic strategies. Keppler-Noreuil KM, Parker VE, Darling TN, Martinez-Agosto JA. Am J Med Genet C Semin Med Genet. 2016;172(4):402-421. PMID: 27860216, PMCID: PMC5592089.

The phosphatidylinositol-3-kinase (PI3K)/AKT/mTOR signaling pathway plays an essential role in regulation of normal cell growth, metabolism, and survival. Somatic activating mutations in the PI3K/AKT/mTOR pathway are among the most common mutations identified in cancer, and have been shown to cause a spectrum of overgrowth syndromes including PIK3CA-Related Overgrowth Spectrum, Proteus syndrome, and brain overgrowth conditions. Clinical findings in these disorders may be isolated or multiple, including sporadic or mosaic overgrowth (adipose, skeletal, muscle, brain, vascular, or lymphatic), and skin abnormalities (including epidermal nevi, hyper-, and hypopigmented lesions), and have the potential risk of tumorigenesis. Key negative regulators of the PI3K-AKT signaling pathway include PTEN and TSC1/TSC2 and germline loss-of function mutations of these genes are established to cause PTEN Hamartoma Tumor Syndrome and Tuberous Sclerosis Complex. Mosaic forms of these conditions lead to increased activation of PI3K and mTOR at affected sites and there is phenotypic overlap between these conditions. All are associated with significant morbidity with limited options for treatment other than symptomatic therapies and surgeries. As dysregulation of the PI3K/AKT/mTOR pathway has been implicated in cancer, several small molecule inhibitors targeting different components of the PI3K/AKT/mTOR signaling pathway are under clinical investigation. The development of these therapies brings closer the prospect of targeting treatment for somatic PI3K/AKT/mTOR-related overgrowth syndromes. This review describes the clinical findings, gene function and pathogenesis of these mosaic overgrowth syndromes, and presents existing and future treatment strategies to reduce or prevent associated complications of these disorders. © 2016 Wiley Periodicals, Inc.

The therapeutic potential of insulin-like growth factor-1 in central nervous system disorders. Costales J, Kolevzon A. Neurosci Biobehav Rev. 2016;63:207-222. PMID: 26780584, PMCID: PMC4790729.

Autism and the synapse: emerging mechanisms and mechanism-based therapies. Ebrahimi-Fakhari D, Sahin M. Curr Opin Neurol. Apr 2015;28(2):91-102. PMID: 25695134.

Balancing Proliferation and Connectivity in PTEN-associated Autism Spectrum Disorder. Tilot AK, Frazier TW 2nd, Eng C. Neurotherapeutics. 2015 Jul;12(3):609-19. doi: 10.1007/s13311-015-0356-8. PMID: 25916396; PMCID: PMC4489960.

Cerebellar Development and Autism Spectrum Disorder in Tuberous Sclerosis Complex. Sundberg M, Sahin M. J Child Neurol. Aug 24 2015. PMID: 26303409, PMCID: PMC4644486.

Cytoplasm-predominant Pten associates with increased region-specific brain tyrosine hydroxylase and dopamine D2 receptors in mouse model with autistic traits. He X, Thacker S, Romigh T, Yu Q, Frazier TW Jr, Eng C. Mol Autism. 2015 Nov 17;6:63. doi: 10.1186/s13229-015-0056-6. eCollection 2015.

Genes, circuits, and precision therapies for autism and related neurodevelopmental disorders. Sahin M, Sur M. Science. Nov 20 2015;350(6263). PMID: 26472761, PMCID: PMC4739545.

Hypsarrhythmia assessment exhibits poor interrater reliability: a threat to clinical trial validity. Hussain SA, Kwong G, Millichap JJ, Mytinger JR, Ryan N, Matsumoto JH, Wu JY, Lerner JT, Sankar R. Epilepsia. 2015 Jan;56(1):77-81. doi: 10.1111/epi.12861. Epub 2014 Nov 10.

Improved fidelity of brain microstructure mapping from single-shell diffusion MRI. Taquet M, Scherrer B, Boumal N, Peters JM, Macq B, Warfield SK. Med Image Anal. Dec 2015;26(1):268- 286. PMID: 26529580, PMCID: PMC4679640.

Longitudinal changes in diffusion properties in white matter pathways of children with tuberous sclerosis complex. Baumer FM, Song JW, Mitchell PD, Pienaar R, Sahin M, Grant PE, Takahashi E. Pediatr Neurol. Jun 2015;52(6):615-623. PMID: 25817702, PMCID: PMC4442035.

Mosaic and Intronic Mutations in TSC1/TSC2 Explain the Majority of TSC Patients with No Mutation Identified by Conventional Testing. Tyburczy ME, Dies KA, Glass J, Camposano S, Chekaluk Y, Thorner AR, Lin L, Krueger D, Franz DN, Thiele EA, Sahin M, Kwiatkowski DJ. PLoS Genet. 2015 Nov 5;11(11):e1005637. doi: 10.1371/journal.pgen.1005637. eCollection 2015 Nov.

Quantitative autism symptom patterns recapitulate differential mechanisms of genetic transmission in single and multiple incidence families. Frazier TW, Youngstrom EA, Hardan AY, Georgiades S, Constantino JN, Eng C. Mol Autism. 2015 Oct 27;6:58. doi: 10.1186/s13229-015-0050-z. eCollection 2015.

Therapeutic Advances in Autism and Other Neurodevelopmental Disorders. Neul JL, Sahin M. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics. Jul 2015;12(3):519-520. PMID: 26076992, PMCID: PMC4489958.

Tuberous Sclerosis: A New Frontier in Targeted Treatment of Autism. Davis PE, Peters JM, Krueger DA, Sahin M. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics. Jul 2015;12(3):572-583. PMID: 25986747, PMCID: PMC4489948.

The neurology of mTOR. Lipton JO, Sahin M. Neuron. Oct 22 2014;84(2):275-291. PMID: 25374355, PMCID: PMC4223653.

The mechanistic target of rapamycin (mTOR) signaling pathway is a crucial cellular signaling hub that, like the nervous system itself, integrates internal and external cues to elicit critical outputs including growth control, protein synthesis, gene expression, and metabolic balance. The importance of mTOR signaling to brain function is underscored by the myriad disorders in which mTOR pathway dysfunction is implicated, such as autism, epilepsy, and neurodegenerative disorders. Pharmacological manipulation of mTOR signaling holds therapeutic promise and has entered clinical trials for several disorders. Here, we review the functions of mTOR signaling in the normal and pathological brain, highlighting ongoing efforts to translate our understanding of cellular physiology into direct medical benefit for neurological disorders.

An Exploratory, Randomized, Double-Blind Clinical Trial of Dipraglurant for Blepharospasm. Kilic-Berkmen G, Kim H, Chen D, Yeo CI, Dinasarapu AR, Scorr LM, Yeo WH, Peterson DA, Williams H, Ruby A, Mills R, Jinnah HA. Mov Disord. 2024 Feb 3. doi: 10.1002/mds.29734. Epub ahead of print. PMID: 38310362.

Blepharospasm is a type of dystonia (involuntary muscle twitching) which affects the muscles surrounding both eyes, causing forced blinking, eye irritation, and involuntary closure of the eyes. Although blepharospasm can be treated with a medication called botulinum toxin, outcomes are often inconsistent.

In this study, researchers conducted an exploratory, randomized, double-blind clinical trial of the oral drug dipraglurant for blepharospasm. Fifteen individuals with blepharospasm received either a placebo or dipraglurant. The team used multiple scales rated by clinicians or participants, digital video, and a wearable sensor to assess outcomes.

Results show that although dipraglurant was well tolerated in study participants, it did not produce an obvious benefit. Authors note that these results provide valuable information for planning future trials in blepharospasm.

Blood-Based Proteomics for Adult-Onset Focal Dystonias. Timsina J, Dinasarapu A, Kilic-Berkmen G, Budde J, Sung YJ, Klein AM, Cruchaga C, Jinnah HA. Ann Neurol. 2024 Jul;96(1):110-120. doi: 10.1002/ana.26929. Epub 2024 Apr 5. PMID: 38578115; PMCID: PMC11186717.

Adult-onset focal dystonias are neurological disorders characterized by overactive muscles leading to involuntary, sometimes painful movements in one part of the body. In most cases, the cause and development of these disorders are unknown.

In this study, researchers used proteomics methods to identify potential changes in blood plasma proteins in patients with adult-onset focal dystonias. The team compared over 6,000 proteins in the blood plasma of participants with cervical dystonia, laryngeal dystonia, and blepharospasm, as well as healthy controls. Next, researchers identified relevant biological pathways and used protein changes to build a prediction model for dystonia.

Results show that 15 proteins were associated with adult-onset focal dystonia, with some proteins shared across multiple subgroups and others unique to just one. The top biological pathways involved changes in the immune system, metal ion transport, and reactive oxygen species. Finally, the prediction model showed high accuracy in discriminating control participants from those with dystonia. Authors note that this study provides new insights into the cause and development of dystonia, as well as new potential biomarkers.

Can symptoms or signs of cervical dystonia occur without abnormal movements of the head or neck?. Thayani M, Jinnah HA. Parkinsonism Relat Disord. 2024 Jun;123:106958. doi: 10.1016/j.parkreldis.2024.106958. Epub 2024 Apr 16.

Duration of botulinum toxin efficacy in cervical dystonia clinical trials: A scoping review. Castagna A, Jinnah HA, Albanese A. Parkinsonism Relat Disord. 2024 May 29;125:107011. doi: 10.1016/j.parkreldis.2024.107011. Online ahead of print.

Exploration of potential immune mechanisms in cervical dystonia. Scorr LM, Kilic-Berkmen G, Sutcliffe DJ, Dinasarapu AR, McKay JL, Bagchi P, Powell MD, Boss JM, Cereb N, Little M, Gragert L, Hanfelt J, McKeon A, Tyor W, Jinnah HA. Parkinsonism Relat Disord. 2024 Feb 17:106036. doi: 10.1016/j.parkreldis.2024.106036. Epub ahead of print. PMID: 38462403.

Replication and reliability of Parkinson's disease clinical subtypes. Cash TV, Lessov-Schlaggar CN, Foster ER, Myers PS, Jackson JJ, Maiti B, Kotzbauer PT, Perlmutter JS, Campbell MC. Parkinsonism Relat Disord. 2024 May 22;124:107016. doi: 10.1016/j.parkreldis.2024.107016. Online ahead of print.

Sex Differences in Dystonia. Kilic-Berkmen G, Scorr LM, McKay L, Thayani M, Donsante Y, Perlmutter JS, Norris SA, Wright L, Klein C, Feuerstein JS, Mahajan A, Wagle-Shukla A, Malaty I, LeDoux MS, Pirio-Richardson S, Pantelyat A, Moukheiber E, Frank S, Ondo W, Saunders-Pullman R, Lohman K, Hess EJ, Jinnah HA. Mov Disord Clin Pract. 2024 May 22. doi: 10.1002/mdc3.14059. Epub ahead of print. PMID: 38778444.

Dystonia is a neurological disorder characterized by excessive muscle contractions leading to abnormal postures, movements, and pain. Previous studies have suggested that there are more female individuals with certain types of dystonia compared to male individuals. However, not much is known about the factors that impact these differences or the mechanisms behind them.

In this study, researchers explored the factors and mechanisms underlying differences between males and females with dystonia. The team analyzed data from two different sources, including 3,222 individuals from the Dystonia Coalition database and 1,377 individuals from the Movement Disorder Society Genetic mutation (MDSGene) database.

Results show that female individuals outnumber male individuals for both adult-onset idiopathic and early onset monogenic (single-gene) dystonias, with females making up about two-thirds of all cases. In addition, these findings reveal that the ratio of females to males with dystonia depends on the type of dystonia, age, and underlying genetics.

Thyroid disease and cervical dystonia. Kilic-Berkmen G, Scorr LM, Defazio G, Jinnah HA. Parkinsonism Relat Disord. 2024 Mar 2:106082. doi: 10.1016/j.parkreldis.2024.106082. Epub ahead of print. PMID: 38458834.

Time for Clinical Dopamine Transporter Scans in Parkinsonism?: Not DAT Yet. Di Luca DG, Perlmutter JS. Neurology. 2024 Jun 11;102(11):e209558. doi: 10.1212/WNL.0000000000209558. Epub 2024 May 17.

Anatomical categorization of isolated non-focal dystonia: novel and existing patterns using a data-driven approach. Younce JR, Cascella RH, Berman BD, Jinnah HA, Bellows S, Feuerstein J, Wagle Shukla A, Mahajan A, Chang FCF, Duque KR, Reich S, Richardson SP, Deik A, Stover N, Luna JM, Norris SA. Dystonia. 2023;2:11305. doi: 10.3389/dyst.2023.11305. Epub 2023 Jun 8. PMID: 37920445; PMCID: PMC10621194

Dystonia is a neurological disorder characterized by excessive muscle contractions leading to abnormal postures, movements, and pain. Any region of the body can be involved, either in isolation or in combination with another region of the body. Although accurate classification of these combinations is important to providing care, it can sometimes be inconsistent.

In this study, researchers used a data-driven clustering approach to investigate which combinations are most common in dystonia. The team analyzed 1,618 participants with isolated non-focal dystonia from the Dystonia Coalition database to explore which body regions were affected together.

Results reinforce common patterns in cranial and cervical regions. However, findings also show unexpectedly strong associations between bilateral upper or lower limbs, revealing new patterns that may represent an underrecognized dystonia subtype.

Assessing the Severity of Cervical Dystonia: Ask the Doctor or Ask the Patient. Cotton AC, Scorr L, McDonald W, Comella C, Perlmutter JS, Goetz CG, Jankovic J, Marsh L, Factor S, Jinnah HA. Mov Disord Clin Pract. 2023 Aug 3;10(9):1399-1403. doi: 10.1002/mdc3.13827. PMID: 37772296; PMCID: PMC10525044

Cervical dystonia is a rare, often painful, movement disorder associated with characteristic sustained or jerky involuntary muscle contractions of the neck. The severity of cervical dystonia can be assessed using either clinician-rated scales (CRS) or patient-rated outcome (PRO) tools. However, these two measures are often poorly correlated.   

In this study, researchers aimed to determine if the correlation between a CRS and PRO for the movement disorder of cervical dystonia improves by accounting for non-movement features. The team evaluated 209 patients with cervical dystonia using a CRS and a PRO.

The results revealed a weak correlation between the two measures, even when considering only the movement. However, the correlation improved with a model that included non-motor symptoms of pain, depression, and disability. These results suggest that assessing the movement disorder with a PRO should also include assessments of non-motor symptoms that may contribute to the patient’s perception of the disorder. Findings may apply to other disorders, especially those with frequent non-motor co-morbidities.

Demographics and Clinical Characteristics Associated with the Spread of New-Onset Laryngeal Dystonia. Ghanouni A, Jona N, Jinnah HA, Kilic-Berkmen G, Shelly S, Klein AM. Laryngoscope. 2024 May;134(5):2295-2299. doi: 10.1002/lary.31146. Epub 2023 Nov 1.

Determinants of gait dystonia severity in cerebral palsy. Aravamuthan BR, Pearson TS, Ueda K, Miao H, Zerafati-Jahromi G, Gilbert L, Comella C, Perlmutter JS. Dev Med Child Neurol. 2023 Jul;65(7):968-977. doi: 10.1111/dmcn.15524. Epub 2023 Jan 26.

Interrater reliability of motor severity scales for hemifacial spasm. Lee HY, Park I, Luu MP, Zhao J, Vu JP, Cisneros E, Berman BD, Jinnah HA, Kim HJ, Liu CY, Perlmutter JS, Richardson SP, Weissbach A, Stebbins GT, Peterson DA. J Neural Transm (Vienna). 2023 Oct;130(10):1269-1279. doi: 10.1007/s00702-023-02667-w. Epub 2023 Jul 19.

Longitudinal predictors of health-related quality of life in isolated dystonia. Junker J, Hall J, Berman BD, Vidailhet M, Roze E, Bäumer T, Malaty IA, Shukla AW, Jankovic J, Reich SG, Espay AJ, Duque KR, Patel N, Perlmutter JS, Jinnah HA; Dystonia Coalition Study Group; Brandt V, Brüggemann N. J Neurol. 2023 Oct 15. doi: 10.1007/s00415-023-12022-4. Online ahead of print.

Pain Reduction in Cervical Dystonia Following Treatment with IncobotulinumtoxinA: A Pooled Analysis. Albanese A, Wissel J, Jost WH, Castagna A, Althaus M, Comes G, Scheschonka A, Vacchelli M, Jinnah HA. Toxins (Basel). 2023 May 12;15(5):333. doi: 10.3390/toxins15050333.

Suitability of Automated Writing Measures for Clinical Trial Outcome in Writer's Cramp. Bukhari-Parlakturk N, Lutz MW, Al-Khalidi HR, Unnithan S, Wang JE, Scott B, Termsarasab P, Appelbaum LG, Calakos N. Mov Disord. 2023 Jan;38(1):123-132. doi: 10.1002/mds.29237. Epub 2022 Oct 13.

Thyroid disease in cervical dystonia. Kilic-Berkmen G, Scorr L, Rosen A, Wu E, Freeman A, Silver M, Hanfelt J, Jinnah HA. Parkinsonism Relat Disord. 2023 Feb;107:105274. doi: 10.1016/j.parkreldis.2022.105274. Epub 2022 Dec 30. PMID: 36621155.

What Is Hemidystonia. Vizcarra JA, Jinnah HA. Mov Disord Clin Pract. 2023 Feb 3;10(3):477-481. doi: 10.1002/mdc3.13659. eCollection 2023 Mar.

Abnormalities of neural stem cells in Lesch-Nyhan disease. Dinasarapu AR, Sutcliffe DJ, Seifar F, Visser JE, Jinnah HA. J Neurogenet. 2022 Mar-Jun;36(2-3):81-87. doi: 10.1080/01677063.2022.2129632. Epub 2022 Oct 13.

Bidding for a Grateful Patient. Perlmutter JS. Narrat Inq Bioeth. 2022;12(1):7-9. doi: 10.1353/nib.2022.0003.

Clinical Features and Evolution of Blepharospasm: A Multicenter International Cohort and Systematic Literature Review. Scorr LM, Cho HJ, Kilic-Berkmen G, McKay JL, Hallett M, Klein C, Baumer T, Berman BD, Feuerstein JS, Perlmutter JS, Berardelli A, Ferrazzano G, Wagle-Shukla A, Malaty IA, Jankovic J, Bellows ST, Barbano RL, Vidailhet M, Roze E, Bonnet C, Mahajan A, LeDoux MS, Fung VSC, Chang FCF, Defazio G, Ercoli T, Factor S, Wojno T, Jinnah HA. Dystonia. 2022;1:10359. doi: 10.3389/dyst.2022.10359. Epub 2022 May 16. PMID: 36248010; PMCID: PMC9557246.

Clinical and Structural Findings in Patients With Lesion-Induced Dystonia: Descriptive and Quantitative Analysis of Published Cases. Corp DT, Greenwood CJ, Morrison-Ham J, Pullinen J, McDowall GM, Younger EFP, Jinnah HA, Fox MD, Joutsa J. Neurology. 2022 Nov 1;99(18):e1957-e1967. doi: 10.1212/WNL.0000000000201042. Epub 2022 Aug 17.

Clinical features, pathophysiology, treatment, and controversies of tremor in dystonia. Panyakaew P, Jinnah HA, Shaikh AG. J Neurol Sci. 2022 Apr 15;435:120199. doi: 10.1016/j.jns.2022.120199. Epub 2022 Feb 22. PMID: 35259651.

Dystonia is a general term for a group of movement disorders characterized by uncontrollable, sometimes painful, involuntary muscle contractions, resulting in repetitive shaking, turning, and twisting of affected body parts. Dystonia is a rare disorder, but it often coexists with a more common disorder, tremor. The reasons for the frequent co-occurrence of dystonia and tremor are not clear. In this review article, researchers outline the differences in definitions, subtypes, and pathophysiology of dystonia and tremor. They outline some controversial topics, such as whether these two problems share a similar pathophysiology.

Correlating perceptual voice quality in ADSD with computer vision assessment of glottal geometry dynamics. Peterson QA, Fei T, Sy LE, Froeschke LLO, Mendelsohn AH, Berke GS, Peterson DA. J Speech Lang Hear Res. 2022 Oct 17;65(10):3695-3708. doi: 10.1044/2022_JSLHR-22-00053. Epub 2022 Sep 21.

Diagnosis and classification of blepharospasm: Recommendations based on empirical evidence. Kilic-Berkmen G, Defazio G, Hallett M, Berardelli A, Ferrazzano G, Belvisi D, Klein C, Bäumer T, Weissbach A, Perlmutter JS, Feuerstein J, Jinnah HA; Dystonia Coalition Investigators. J Neurol Sci. 2022 Aug 15;439:120319. doi: 10.1016/j.jns.2022.120319. Epub 2022 Jun 10. PMID: 35716653; PMCID: PMC9357089.

Blepharospasm is a rare disorder characterized by spasms of muscles surrounding both eyes with excessive blinking and squinting. It is the second most common form of dystonia (involuntary muscle twitching) and often spreads to other regions of the body. Currently, guidelines for diagnosis and classification are ambiguous. In this study, researchers aimed to provide more specific recommendations for diagnosis and classification of blepharospasm. Data were obtained from the Dystonia Coalition for patients diagnosed with all types of isolated dystonia. The team evaluated these data to determine how examinations recorded by movement disorder specialists were used to classify blepharospasm as focal, segmental, or multifocal. Results showed much variability in expert opinion regarding the diagnosis of blepharospasm, which was often inconsistent with existing guidelines for the diagnosis and classification of focal blepharospasm. This study highlights the need for more specific guidelines, which are provided in the publication.

Differentiating tardive dyskinesia: a video-based review of antipsychotic-induced movement disorders in clinical practice. Hauser RA, Meyer JM, Factor SA, Comella CL, Tanner CM, Xavier RM, Caroff SN, Lundt L. CNS Spectr. 2022 Apr;27(2):208-217. doi: 10.1017/S109285292000200X. Epub 2020 Nov 20.

From null to midline: changes in head posture do not predictably change head tremor in cervical dystonia. Vu JP, Cisneros E, Zhao J, Lee HY, Jankovic J, Factor SA, Goetz CG, Barbano RL, Perlmutter JS, Jinnah HA, Richardson SP, Stebbins GT, Elble RJ, Comella CL, Peterson DA. Dystonia. 2022;1:10684. doi: 10.3389/dyst.2022.10684. Epub 2022 Sep 1. PMID: 37101941; PMCID: PMC10128866.

Head tremor in cervical dystonia: Quantifying severity with computer vision. Vu JP, Cisneros E, Lee HY, Le L, Chen Q, Guo XA, Rouzbehani R, Jankovic J, Factor S, Goetz CG, Barbano RL, Perlmutter JS, Jinnah HA, Pirio Richardson S, Stebbins GT, Elble R, Comella CL, Peterson DA. J Neurol Sci. 2022 Mar 15;434:120154. doi: 10.1016/j.jns.2022.120154. Epub 2022 Jan 22.

Hold that pose: capturing cervical dystonia's head deviation severity from video. Zhang Z, Cisneros E, Lee HY, Vu JP, Chen Q, Benadof CN, Whitehill J, Rouzbehani R, Sy DT, Huang JS, Sejnowski TJ, Jankovic J, Factor S, Goetz CG, Barbano RL, Perlmutter JS, Jinnah HA, Berman BD, Richardson SP, Stebbins GT, Comella CL, Peterson DA. Ann Clin Transl Neurol. 2022 Mar 25. doi: 10.1002/acn3.51549. Epub ahead of print. PMID: 35333449.

Cervical dystonia (CD) is a movement disorder resulting in characteristic, sustained, or tremor-like involuntary muscle contractions of the neck. It is characterized by excessive pulling of the muscles of the neck and shoulder, which causes the head to turn or tilt involuntarily. Typically, head posture severity is quantified with clinical rating scales that are susceptible to variability, reducing their sensitivity as outcome measures. Previously used objective methods require specialized equipment and have been limited to studies with a small number of cases. In this study, researchers evaluated a novel software system—the Computational Motor Objective Rater (CMOR)—to quantify multi-axis directionality and severity of head posture in CD using only conventional video camera recordings. They found that CMOR’s metrics for head posture severity correlated with clinical rating scales. Authors note that CMOR’s reliance upon only conventional video recordings supports its future potential for large-scale multisite clinical trials.

Measurement Properties of Clinical Scales Rating the Severity of Blepharospasm: A Multicenter Observational Study. Defazio G, Hallett M, Berardelli A, Perlmutter JS, Berman BD, Jankovic J, Bäumer T, Comella C, Ercoli T, Ferrazzano G, Fox SH, Kim HJ, Moukheiber ES, Pirio Richardson S, Weissbach A, Gigante AF, Jinnah HA. Mov Disord Clin Pract. 2022 Aug 15;9(7):949-955. doi: 10.1002/mdc3.13530. eCollection 2022 Oct.

Microstructural white matter abnormalities in Lesch-Nyhan disease. Del Bene VA, Crawford JL, Gómez-Gastiasoro A, Vannorsdall TD, Buchholz A, Ojeda N, Harris JC, Jinnah HA, Schretlen DJ. Eur J Neurosci. 2022 Jan;55(1):264-276. doi: 10.1111/ejn.15512. Epub 2021 Dec 6.

Motor and psychiatric features in idiopathic blepharospasm: A data-driven cluster analysis. Defazio G, Gigante AF, Hallett M, Berardelli A, Perlmutter JS, Berman BD, Jankovic J, Bäumer T, Comella C, Ercoli T, Ferrazzano G, Fox SH, Kim HJ, Moukheiber ES, Richardson SP, Weissbach A, Jinnah HA.. Parkinsonism Relat Disord. 2022 Nov;104:94-98. doi: 10.1016/j.parkreldis.2022.10.008. Epub 2022 Oct 13.

Protracted course progressive supranuclear palsy. Couto B, Martinez-Valbuena I, Lee S, Alfradique-Dunham I, Perrin RJ, Perlmutter JS, Cruchaga C, Kim A, Visanji N, Sato C, Rogaeva E, Lang AE, Kovacs GG. Eur J Neurol. 2022 Aug;29(8):2220-2231. doi: 10.1111/ene.15346. Epub 2022 Apr 21.

Reid EW. Reid EW, Nobriga CV. Clin Linguist Phon. 2022 Jul 12:1-16. doi: 10.1080/02699206.2022.2096483. Online ahead of print.

The apparent paradox of phenotypic diversity and shared mechanisms across dystonia syndromes. Di Fonzo A, Albanese A, Jinnah HA. Curr Opin Neurol. 2022 Aug 1;35(4):502-509. doi: 10.1097/WCO.0000000000001076. Epub 2022 Jul 5. PMID: 35856917; PMCID: PMC9309988.

The dystonias are a group of movement disorders characterized by uncontrollable, sometimes painful, involuntary muscle contractions, resulting in repetitive shaking, turning, and twisting of affected body parts. As new genetic causes continue to be discovered, researchers have found that these different genetic forms share unexpectedly common underlying mechanisms. In this review article, authors explore the phenotypic diversity and shared mechanisms across dystonia syndromes. They also describe how these mechanisms can give rise to motor performance dysfunctions with a clinical aspect of dystonia. Authors state that this relationship between dystonia genes could revolutionize current dystonia classification systems. In the future, these advances could have promising effects on mechanism-based therapeutic approaches.

Uric Acid in Parkinson's Disease: What Is the Connection?. Seifar F, Dinasarapu AR, Jinnah HA.. Mov Disord. 2022 Nov;37(11):2173-2183. doi: 10.1002/mds.29209. Epub 2022 Sep 3.

A Multi-center Genome-wide Association Study of Cervical Dystonia. Sun YV, Li C, Hui Q, Huang Y, Barbano R, Rodriguez R, Malaty IA, Reich S, Bambarger K, Holmes K, Jankovic J, Patel NJ, Roze E, Vidailhet M, Berman BD, LeDoux MS, Espay AJ, Agarwal P, Pirio-Richardson S, Frank SA, Ondo WG, Saunders-Pullman R, Chouinard S, Natividad S, Berardelli A, Pantelyat AY, Brashear A, Fox SH, Kasten M, Krämer UM, Neis M, Bäumer T, Loens S, Borsche M, Zittel S, Maurer A, Gelderblom M, Volkmann J, Odorfer T, Kühn AA, Borngräber F, König IR, Cruchaga C, Cotton AC, Kilic-Berkmen G, Freeman A, Factor SA, Scorr L, Bremner JD, Vaccarino V, Quyyumi AA, Klein C, Perlmutter JS, Lohmann K, Jinnah HA. Mov Disord. 2021 Jul 28. doi: 10.1002/mds.28732. Online ahead of print.

Cervical dystonia is a painful condition in which a patient’s neck muscles contract involuntarily, causing the head to twist or turn to one side. In this multi-center international study, researchers conducted a Genome-Wide Association Study (GWAS) using samples from the Dystonia Coalition Biorepository. They compared 919 cervical dystonia patients with 1491 controls, seeking to identify genetic loci—fixed positions on a chromosome where a particular gene or genetic marker is located—related to the disorder. They identified one genome-wide significant variant that was however not replicated in an independent sample of 473 cervical dystonia cases and 481 controls. Gene-based analysis identified DENND1A to be significantly associated with cervical dystonia. One low-frequency variant located within the GABBR2 gene on chromosome 9 was associated with lower age-at-onset. Authors concluded that the genetic underpinnings of cervical dystonia are heterogeneous and likely consist of multiple distinct variants of small effect sizes, rather than one gene that is responsible for many cases. Larger GWAS sample sizes may be needed to understand the genetic causes of cervical dystonia.

Cervical Dystonia Is Associated with Aberrant Inhibitory Signaling Within the Thalamus. Groth CL, Brown M, Honce JM et al. Front Neurol. 2021 Feb 9;11:575879. doi: 10.3389/fneur.2020.575879. PMID: 33633655; PMCID: PMC7900407.

Current Guidelines for Classifying and Diagnosing Cervical Dystonia: Empirical Evidence and Recommendations. Kilic-Berkmen G, Pirio Richardson S, Perlmutter JS et al. Mov Disord Clin Pract. 2021 Dec 1;9(2):183-190. doi: 10.1002/mdc3.13376. PMID: 35146058; PMCID: PMC8810420.

Deep brain stimulation in Lesch-Nyhan disease: outcomes from the patient's perspective. Visser JE, Cotton AC, Schretlen DJ, Bloch J, Tedroff K, Schechtmann G, Radu Djurfeldt D, Gonzalez V, Cif L, Jinnah HA. Dev Med Child Neurol. 2021 Mar 10. doi: 10.1111/dmcn.14852. Online ahead of print.

Diagnostic criteria for blepharospasm: A multicenter international study. Defazio G, Jinnah HA, Berardelli A, Perlmutter JS, Berkmen GK, Berman BD, Jankovic J, Bäumer T, Comella C, Cotton AC, Ercoli T, Ferrazzano G, Fox S, Kim HJ, Moukheiber ES, Richardson SP, Weissbach A, Wrigth LJ, Hallett M. Parkinsonism Relat Disord. 2021 Oct;91:109-114. doi: 10.1016/j.parkreldis.2021.09.004. Epub 2021 Sep 8. PMID: 34583301.

Blepharospasm (BSP) is a form of focal dystonia that manifests with eyelid spasms, involuntary eyelid closures, and spontaneous blinking. To date, there are no widely accepted criteria to diagnose BSP. In this study, researchers validate the use of new diagnostic criteria for BSP in a diverse international population. “This was a huge, multicenter effort aimed at establishing internationally acceptable diagnostic criteria for BSP,” says H. A. Jinnah, MD, PhD, principal investigator of the DC. “Such criteria did not exist before. What we do in the USA with RDCRN funding must ultimately go to the rest of the world.”

Distinct progression patterns across Parkinson disease clinical subtypes. Myers PS, Jackson JJ, Clover AK, Lessov-Schlaggar CN, Foster ER, Maiti B, Perlmutter JS, Campbell MC. Ann Clin Transl Neurol. 2021 Aug;8(8):1695-1708. doi: 10.1002/acn3.51436. Epub 2021 Jul 26.

Does raising the arms modify head tremor severity in cervical dystonia?. Cisneros E, Vu JP, Lee HY et al. Tremor Other Hyperkinet Mov (N Y). 2021 Jun 23;11:21. doi: 10.5334/tohm.623. PMID: 34221696; PMCID: PMC8231450.

Dystonia and Tremor: A Cross-Sectional Study of the Dystonia Coalition Cohort. Shaikh AG, Beylergil SB, Scorr L, Kilic-Berkmen G, Freeman A, Klein C, Junker J, Loens S, Brüggemann N, Münchau A, Bäumer T, Vidailhet M, Roze E, Bonnet C, Jankovic J, Jimenez-Shahed J, Patel N, Marsh L, Comella C, Barbano RL, Berman BD, Malaty I, Wagle Shukla A, Reich SG, Ledoux MS, Berardelli A, Ferrazzano G, Stover N, Ondo W, Pirio Richardson S, Saunders-Pullman R, Mari Z, Agarwal P, Adler C, Chouinard S, Fox SH, Brashear A, Truong D, Suchowersky O, Frank S, Factor S, Perlmutter J, Jinnah HA. Neurology. 2021 Jan 26;96(4):e563-e574. doi: 10.1212/WNL.0000000000011049. Epub 2020 Oct 12.

Feedback-dependent neuronal properties make focal dystonias so focal. Sedov A, Usova S, Popov V, Tomskiy A, Jinnah HA, Shaikh AG. Eur J Neurosci. 2021 Apr;53(7):2388-2397. doi: 10.1111/ejn.14933. Epub 2020 Aug 31.

Seeking to better understand the neuron activity responsible for dystonia, researchers tested the hypothesis that focal dystonia (a condition that causes abnormal movements in a single body part) may be associated with specific vs broad neuronal abnormalities. They measured the activity of individual neurons of the basal ganglia during deep brain stimulation surgery in 12 patients with dystonia limited to the neck. They found abnormal neuronal activity for both neck and hand neurons, even though the hand was unaffected. These results imply abnormalities of neuronal activity are not restricted to neurons associated with the affected body region, but appear to be more widespread. Symptoms may appear in only in specific body regions, such as the neck, when a second abnormality is added, such as sensory feedback from the affected region.

Functional Connectivity of Vermis Correlates with Future Gait Impairments in Parkinson's Disease. Maiti B, Rawson KS, Tanenbaum AB, Koller JM, Snyder AZ, Campbell MC, Earhart GM, Perlmutter JS. Mov Disord. 2021 Nov;36(11):2559-2568. doi: 10.1002/mds.28684. Epub 2021 Jun 10.

Head tremor and pain in cervical dystonia. Vu JP, Lee HY, Chen Q, Cisneros E, Barbano RL, Goetz CG, Jankovic J, Jinnah HA, Perlmutter JS, Berman BD, Appelbaum MI, Stebbins GT, Comella CL, Peterson DA. J Neurol. 2021 May;268(5):1945-1950. doi: 10.1007/s00415-020-10378-5. Epub 2021 Jan 8.

To determine how head tremor and pain are associated with cervical dystonia, researchers undertook a retrospective review of severity and pain rating scales from 188 patients. They examined associations of head trauma and pain with age at onset, disease duration, and head tremor subtype, finding that head tremor severity was associated with longer disease duration while pain severity was associated with younger age at onset. Researchers said these associations further characterize the heterogeneity of cervical dystonia’s clinical presentation and suggest similarly heterogenous underlying mechanisms.

Induced pluripotent stem cells from subjects with Lesch-Nyhan disease. Sutcliffe DJ, Dinasarapu AR, Visser JE, Hoed JD, Seifar F, Joshi P, Ceballos-Picot I, Sardar T, Hess EJ, Sun YV, Wen Z, Zwick ME, Jinnah HA. Sci Rep. 2021 Apr 19;11(1):8523. doi: 10.1038/s41598-021-87955-9.

Is Levodopa Response a Valid Indicator of Parkinson's Disease?. Martin WRW, Miles M, Zhong Q, Hartlein J, Racette BA, Norris SA, Ushe M, Maiti B, Criswell S, Davis AA, Kotzbauer PT, Cairns NJ, Perrin RJ, Perlmutter JS. Mov Disord. 2021 Apr;36(4):948-954. doi: 10.1002/mds.28406. Epub 2020 Nov 30.

Neuropathology of blepharospasm. Fagan M, Scorr L, Bernhardt D, Hess EJ, Perlmutter JS, Pardo CA, Jinnah HA. Exp Neurol. 2021 Dec;346:113855. doi: 10.1016/j.expneurol.2021.113855. Epub 2021 Aug 28. PMID: 34464652; PMCID: PMC8490317.

The dystonias are a group of disorders characterized by excessive muscle contractions leading to abnormal repetitive movements or postures. Blepharospasm is a subtype of dystonia characterized by overactive facial muscles. Previous brain imaging studies have implied subtle structural changes in blepharospasm, but the nature of these changes is not well understood. In this study, researchers found subtle loss of cerebellar Purkinje neurons in histopathological studies of brains from blepharospasm cases. These findings are similar to those reported for subjects with cervical dystonia. “To focus on what we should be looking for in blepharospasm, we used what we learned about cervical dystonia published in 2013 in a prior funding cycle,” says H. A. Jinnah, MD, PhD, principal investigator of the DC. “Thus, the RDCRN strategy of combining similar disorders under the same research umbrella is successful in facilitating both the research questions and methodologies.”

Non-motor phenotypic subgroups in adult-onset idiopathic, isolated, focal cervical dystonia. Megan E Wadon, Grace A Bailey, Zehra Yilmaz, Emily Hubbard, Meshari AlSaeed, Amy Robinson, Duncan McLauchlan, Richard L Barbano, Laura Marsh, Stewart A Factor, Susan H Fox, Charles H Adler, Ramon L Rodriguez, Cynthia L Comella, Stephen G Reich, William L Severt, Christopher G Goetz, Joel S Perlmutter, Hyder A Jinnah, Katharine E Harding, Cynthia Sandor, Kathryn J Peall. Brain Behav. 2021 Aug;11(8):e2292. doi: 10.1002/brb3.2292. Epub 2021 Jul 21. PMID: 34291595; PMCID: PMC8413761.

Adult-onset idiopathic, isolated, focal cervical dystonia (AOIFCD) is a disorder characterized by involuntary muscle contractions that cause repetitive movements or abnormal postures. These movements can be painful and cause considerable disability. Although patients most commonly present to clinical services due to their motor symptoms, increasing evidence suggests a significant non-motor phenotype to be associated with most forms of dystonia, including AOIFCD. Improved understanding of these non-motor symptoms is needed to better target therapeutic interventions. In this study, researchers examined non-motor phenotypic features to identify possible AOIFCD subgroups. Non-motor symptoms were assessed in participants with AOIFCD, including psychiatric symptoms, pain, sleep disturbance, and quality of life. To investigate the relationship between these symptoms and determine phenotypic subgroups, researchers used Cluster and Bayesian multiple mixed model phenotype analyses. They identified two phenotypic subgroups of non-motor symptoms accompanying AOIFCD, with differences in psychiatric symptoms, pain catastrophizing, sleep quality, and quality of life. Researchers say that improved understanding of these symptom groups will enable better targeted pathophysiological investigation and future therapeutic intervention.

Oromandibular Dystonia: A Clinical Examination of 2,020 Cases. Scorr LM, Factor FA, Parra SP et al and Jinnah HA for the Dystonia Coalition Investigators. Front Neurol. 2021 Sep 16;12:700714. doi: 10.3389/fneur.2021.700714. PMID: 34603182; PMCID: PMC8481678.

Pallidal neuron activity determines responsiveness to deep brain stimulation in cervical dystonia. Sedov A, Popov V, Gamaleya A, Semenova U, Tomskiy A, Jinnah HA, Shaikh AG. Clin Neurophysiol. 2021 Dec;132(12):3190-3196. doi: 10.1016/j.clinph.2021.07.032. Epub 2021 Sep 27. PMID: 34627682; PMCID: PMC9195244.

Predictive modeling of spread in adult-onset isolated dystonia: key properties and effect of tremor inclusion. Wang M, Sajobi T, Morgante F, Adler C, Agarwal P, Bäumer T, Berardelli A, Berman BD, Blumin J, Borsche M, Brashear A, Deik A, Duque K, Espay AJ, Ferrazzano G, Feuerstein J, Fox S, Frank S, Hallett M, Jankovic J, LeDoux MS, Leegwater-Kim J, Mahajan A, Malaty IA, Ondo W, Pantelyat A, Pirio-Richardson S, Roze E, Saunders-Pullman R, Suchowersky O, Truong D, Vidailhet M, Shukla AW, Perlmutter JS, Jinnah HA, Martino D. European Journal of Neurology. 2021 Dec;28(12):3999-4009. doi: 10.1111/ene.15031. Epub 2021 Aug 4. PMID: 34296504; PMCID: PMC9100858.

Quality of life in isolated dystonia: non-motor manifestations matter. Junker J, Berman BD, Hall J, Wahba DW, Brandt V, Perlmutter JS, Jankovic J, Malaty IA, Wagle Shukla A, Reich SG, Espay AJ, Duque KR, Patel N, Roze E, Vidailhet M, Jinnah HA, Brüggemann N. J Neurol Neurosurg Psychiatry 2021 Feb 9; jnnp-2020-325193. doi: 10.1136/jnnp-2020-325193. Online ahead of print. PMCID: PMC8356023.

Rational Design of Novel Therapies for Pantothenate Kinase-Associated Neurodegeneration. Thakur N, Klopstock T, Jackowski S, Kuscer E, Tricta F, Videnovic A, Jinnah HA. Mov Disord. 2021 Sep;36(9):2005-2016. doi: 10.1002/mds.28642. Epub 2021 May 18.

Pantothenate kinase-associated neurodegeneration (PKAN) is a rare autosomal recessive neurogenetic disorder in which specific regions of the central nervous system progressively degenerate, causing progressive, abnormal, involuntary movements. PKAN is caused by genetic variants in the PANK2 gene that result in dysfunction in enzyme activity. This disruption allows iron to accumulate in the brain. Increased understanding of the molecular and biochemical mechanisms of the disease has allowed researchers to use these insights to begin designing new therapeutics for the disorder. Study authors review the results of recent clinical trials and pre-clinical studies of several compounds currently being evaluated. They say that these trials have helped improve trial designs and allowed the development of PKAN-specific measures to monitor outcomes. They conclude that PKAN provides a good model for targeted drug development and clinical trial design for rare disorders.

Resting-State Functional Connectivity Predicts STN DBS Clinical Response. Younce JR, Campbell MC, Hershey T, Tanenbaum AB, Milchenko M, Ushe M, Karimi M, Tabbal SD, Kim AE, Snyder AZ, Perlmutter JS, Norris SA. Mov Disord. 2021 Mar;36(3):662-671. doi: 10.1002/mds.28376. Epub 2020 Nov 19.

The Dystonia Coalition: A Multicenter Network for Clinical and Translational Studies. Kilic-Berkmen G, Wright LJ, Perlmutter JS, Comella C, Hallett M, Teller J, Pirio Richardson S, Peterson DA, Cruchaga C, Lungu C, Jinnah HA. Front Neurol. 2021 Apr 8;12:660909. doi: 10.3389/fneur.2021.660909. PMID: 33897610; PMCID: PMC8060489.

The emerging neurological spectrum of AARS2-associated disorders. Parra SP, Heckers SH, Wilcox WR, Mcknight CD, Jinnah HA.. Parkinsonism Relat Disord. 2021 Dec;93:50-54. doi: 10.1016/j.parkreldis.2021.10.031. Epub 2021 Nov 10.

A metabolomic study of cervical dystonia. Liu C, Scorr L, Kilic-Berkmen G, Cotton A, Factor SA, Freeman A, Tran V, Liu K, Uppal K, Jones D, Jinnah HA, Sun YV. Parkinsonism Relat Disord. 2021 Jan;82:98-103. doi: 10.1016/j.parkreldis.2020.11.020. Epub 2020 Nov 26. PMID: 33271463; PMCID: PMC7856090.

Cervical dystonia is the most common adult-onset focal dystonia. Researchers currently believe that cervical dystonia may be caused by a combination of genetic and environmental factors. Although genetic factors have been studied extensively, other factors have not. To identify potentially abnormal metabolites or altered biological pathways, researchers conducted an exploratory metabolomics analysis of cervical dystonia. The team compared plasma samples from 100 idiopathic cervical dystonia patients and 100 controls. Results showed that altered biological pathways may relate to carbohydrate and lipid metabolism. Study authors say this may provide novel insights into the biology of cervical dystonia.

Clinical and Demographic Characteristics of Upper Limb Dystonia. Norris SA, Jinnah HA, Klein C, Jankovic J, Berman BD, Roze E, Mahajan A, Espay AJ, Murthy AV, Fung VSC, LeDoux MS, Chang FCF, Vidailhet M, Testa C, Barbano R, Malaty IA, Bäumer T, Loens S, Wright LJ, Perlmutter JS. Mov Disord. 2020 Nov;35(11):2086-2090. doi: 10.1002/mds.28223. Epub 2020 Aug 26.

Hemodynamic responses are abnormal in isolated cervical dystonia. Berman BD, Groth CL, Shelton E, Sillau SH, Sutton B, Legget KT, Tregellas JR. J Neurosci Res. 2020 Apr;98(4):692-703. doi: 10.1002/jnr.24547. Epub 2019 Nov 6.

It's tricky: Rating alleviating maneuvers in cervical dystonia. Cisneros E, Stebbins GT, Chen Q, Vu JP, Benadof CN, Zhang Z, Barbano RL, Fox SH, Goetz CG, Jankovic J, Jinnah HA, Perlmutter JS, Adler CH, Factor SA, Reich SG, Rodriguez R, Severt LL, Stover NP, Berman BD, Comella CL, Peterson DA. J Neurol Sci. 2020 Dec 15;419:117205. doi: 10.1016/j.jns.2020.117205. Epub 2020 Nov 1.

Medical and Surgical Treatments for Dystonia. Jinnah HA. Neurol Clin. 2020 May;38(2):325-348. doi: 10.1016/j.ncl.2020.01.003. Epub 2020 Mar 2.

Pallidal Activity in Cervical Dystonia with and Without Head Tremor. Sedov A, Usova S, Semenova U, Gamaleya A, Tomskiy A, Beylergil SB, Jinnah HA, Shaikh AG. Cerebellum. 2020 Jun;19(3):409-418. doi: 10.1007/s12311-020-01119-5.